
Implementing mental poker without a Trusted Third Party

Dimitrios Mistriotis
dimitrios.mistriotis@kcl.ac.uk∗

September 4, 2009

∗you can also use dimitrismistriotis@gmail.com

1

Abstract

The aim of this project is to implement a security-related protocol using secure coding
techniques and paradigms, mainly with respect to information flows.

The security protocol chosen is a specific instance of Mental Poker, a cryptographic
protocol defined in 1979 with many interesting attributes. The reference language chosen
is Java and its extension, Java with Information Flows, implemented in Cornell University.

This project, because of it’s overambitious targets, did not reach its initially specified
goal, which was a full implementation of a mental poker protocol in Java with Informa-
tion Flows. This did not undermine the educational and research benefits of the whole
procedure. Additionally this lays good foundations for further future research and imple-
mentations, since major portions of the protocol was implemented in Java as well as some
steps towards an implementation in JIF.

Contents

1 Introduction 3

2 Mental Poker 3
2.1 Definition . 3
2.2 Assumptions . 4
2.3 Existing Work . 4
2.4 Data Structures . 4

2.4.1 Distributed Notarization Chain . 4
2.4.2 Card Vector Representation . 6
2.4.3 Card Permutation Matrix . 7
2.4.4 Delta and Epsilon Sets . 8
2.4.5 Elgamal . 9

2.5 Algorithm Description . 10
2.5.1 Introduction . 10
2.5.2 Initialization . 11
2.5.3 Card Draw . 11

2.6 Implementation of Mental Poker in Java . 12
2.6.1 Initialization States . 13
2.6.2 Card Draw States . 13

3 JIF 15
3.1 Introduction to JIF . 15
3.2 Decentralized Label Model . 16

3.2.1 Values . 16
3.2.2 Principals . 16
3.2.3 Labels . 16
3.2.4 Relabeling . 17

3.3 Implicit and Explicit flows . 17
3.4 Decentralized Label Model in JIF . 18

3.4.1 Example: Variable Declaration . 18

3.4.2 Example: Declassification . 18
3.4.3 Example: Array Handling . 18
3.4.4 Example: Classes, Method signatures and Exceptions 19

3.5 Criticism of JIF . 19
3.6 Tools . 20
3.7 Learning JIF . 21

4 Mental Poker in JIF 22
4.1 Introduction . 22
4.2 Methodology chosen . 22
4.3 Annotations . 22
4.4 Implementation . 24

4.4.1 Uplifting a Java class . 24
4.4.2 Porting a Java class . 25
4.4.3 Implementing a JIF class . 26

5 Evaluation 27
5.1 Future Work . 28

6 Appendices 28
6.1 Appendix A - Project Description . 28
6.2 Appendix B - Install JIF on ubuntu linux . 28
6.3 Appendix C - Directory structure of deliverable 32
6.4 Appendix D - Java source code . 33

6.4.1 implementation code/java code/CardDrawState.java 33
6.4.2 implementation code/java code/CardPermutationMatrix.java 33
6.4.3 implementation code/java code/CardVectorRepresentation.java 39
6.4.4 implementation code/java code/DNChain.java 41
6.4.5 implementation code/java code/DataChainLink.java 44
6.4.6 implementation code/java code/Deck.java 49
6.4.7 implementation code/java code/DeltaEpsilonSet.java 50
6.4.8 implementation code/java code/EcnryptedDeck.java 51
6.4.9 implementation code/java code/ElGamal.java 52
6.4.10 implementation code/java code/EncryptedCard.java 53
6.4.11 implementation code/java code/EncryptedPermutationMatrix.java . . 54
6.4.12 implementation code/java code/EncryptedVectorDeck.java 57
6.4.13 implementation code/java code/InitializationState.java 58
6.4.14 implementation code/java code/LcaseDeltaSet.java 59
6.4.15 implementation code/java code/LcaseEpsilonSet.java 60
6.4.16 implementation code/java code/MPElGamal.java 60
6.4.17 implementation code/java code/MPEncryptedMessage.java 65
6.4.18 implementation code/java code/MPGame.java 66
6.4.19 implementation code/java code/Player.java 67
6.4.20 implementation code/java code/Sha1Signature.java 77
6.4.21 implementation code/java code/Signature.java 78
6.4.22 implementation code/java code/UZeroGenerator.java 79
6.4.23 implementation code/java code/VectorDeck.java 81

2

6.5 Appendix E - JIF source code . 82
6.5.1 implementation code/jif code/MPElGamal.jif 82
6.5.2 implementation code/jif code/MPEncryptedMessage.jif 83
6.5.3 implementation code/jif code/MPKeyPublic.jif 84
6.5.4 implementation code/jif code/PokerGame.jif 85

3

1 Introduction

According to the description of the project [6], the aim of this project is to produce a mental
poker implementation, without the use of a Trusted Third Party and then use it as a basis
for an implementation of a bigger security-based implementation in a secure language with
respect to information flows. The language chosen for this project is Java with Information
Flows (JIF). The aim of this project is to measure how easy or difficult it is for an MSc
student to get accustomed with and evaluate the JIF concepts and Tools. There is also the
difficulty of writing a useful application in such development environment.

2 Mental Poker

2.1 Definition

Mental Poker was originally introduced in the “Mathematical Gardener” by Rivest, Shamir
and Adleman [19]. According to the original paper, “Mental Poker” is a game of poker played
by two players, without a physical Deck, but with a use of a message exchange communication
channel. At the beginning of the game, a random deal of the deck must be made. In the
duration of the game players must know the cards that are their hand, but having no other
information, such as which cards are on other players’ hands or which are probable to be
drawn next. Also no card should be selected twice. At the end of the game each player must
e able to verify that no other players have cheated.

There are some important elements of the definition such as:

• The absence of a Trusted Third Party (TTP), which means that there is no external
authority involved that will ensure that none of the players tried to cheat.

• The only way players can communicate is through the exchange of messages,

• These messages should have some specific properties, such as some of them being en-
crypted with an encryption algorithm which has some specific properties.

During the initial phases of the project many algorithms for playing mental poker ex-
tending the original one where identified, such as in [22] and [8]. The one chosen to be
implemented for this dissertation is the: ”Practical Mental Poker without a TTP Based on
Homomorphic Encryption” [5]. We chose that particular for a number of reasons such as:
It is the base for many other algorithms that actually derive from the one chosen, or offer
alternatives to some of its properties. Therefore someone can implement the application if
many other algorithms available, without much mental and programming effort. It has also
been studied extensively for it’s cryptographic properties and structure therefore it is a much
safer choice. Finally a number of projects of implementing this particular algorithm with JIF,
such as ”Security-Typed Languages for Implementation of Cryptographic Protocols: A Case
Study” [3] is available, offering a basis for comparison and measurement.

Apart from mental poker there are many other applications for these family of proto-
cols such as other card games, games that require random numbers and random number
generation from a predefined set of numbers, without the need for a Trusted Third Party or-
chestrating and coordinating the process. This makes them a very nice example of producing

4

an application where the study of individual information flows and it’s security implication
is being studied. This is the main reason why many JIF projects implement a Mental Poker
algorithm.

2.2 Assumptions

In addition to the choice of the algorithm some further choices have to be made such as what
is the most appropriate crypto-system. In section 3 of the algorithm description [5] is stated
that:

... Permuting (i.e. shuffling) encrypted cards requires encryption to be homomor-
phic, so that the outcome of permuting and decrypting (i.e. opening) a card is
the same that would be obtained if the card had been permuted without prior
encryption (i.e. reversal) ...

After referencing the relevant literature, such as [18] or [12], as well as other implemen-
tations, the most appropriate algorithm was Elgamal. A proof of the algorithm’s homomor-
phism can be found in: [14].

Elgamal is the prime example of homomorphic encryption as stated in [7], used in other
relevant projects and had enough documentation and implementations available. An implica-
tion of this choice is the fact that the product of an Elgamal’s encryption for a given cleartext
number m, is a pair of numbers as encrypted message. Consequently different data structures
should be used for encrypted messages, increasing significantly the size of code needed for
implementation.

2.3 Existing Work

At the moment of writing this report there are some projects published with similar goals.
Two of those are: Askarov’s and Sabelfeld’s implementation of Mental Poker in JIF [4] and
“A Toolbox for Mental Card Games” [17] implemented in C++.

2.4 Data Structures

In order to implement the mental poker algorithm some data structures specific for this certain
application are introduced:

• Distributed Notarization Chain (sect. 2.4.1)

• Card Vector Representation (sect. 2.4.2)

• Card Permutation Matrix (sect. 2.4.3)

2.4.1 Distributed Notarization Chain

This is an expansion of the concept of the Lamport Password Chains [11], where the expansion
takes into account the existence of more than one entities, in this case the different mental
poker players. DNCs are used in order to have each player to “sign” each of her actions so
that if evaluation needs to occur a path can be constructed that appoints which player did
what. In case of tampered or corrupted data, the player responsible for the event can be

5

pinpointed since the revealed data at the end of the game will give different signatures than
the ones originally supplied. Every chain link mk consists two elements: The Data Field Dk

and the Chaining Value Xk.
Every Data Field further consists of three subfields:

• Timestamp (Tk),

• Concept (Ck) with the information that the link contains and

• Attributes (Vk) with the relevant to Ck information.

Figure 1: fields of a DNC

Addition of a new link to a chain can be done by each player individually, since the player
needs to use only it’s own Xk−1 for signing. Therefore most operations in the mental poker
protocol can be done in parallel. This is the reason why the players do not have to accept
the links in the same order with one another: they can only watch and check each signature
in comparison with the previous link.
When there is the need for players to synchronize a special “Chain contraction” link is being
computed by a certain entity (which in mental poker’s context will be the Croupier player).
This is a mark that a milestone has been reached and the players can continue to an another
part of the algorithm.

Illustrated in the following example:

Figure 2: example of a DNC, here player j computes a concatenation link

The following Concepts are being used in this implementation:
Concept Phase Used

zi Initialization (sect. 2.5.2)
Permutation Commitment Initialization (sect. 2.5.2)

D-set Initialization (sect. 2.5.2)
E-set Initialization (sect. 2.5.2)

Encrypted Deck Initialization (sect. 2.5.2)
First chain contraction Initialization (sect. 2.5.2)

wi Card vector representation Card Draw (sect. 2.5.3)
w
′
i Encrypted Card vector representation Card Draw (sect. 2.5.3)

6

2.4.2 Card Vector Representation

Definition

Central in the mental poker algebra is the notion of the card and it’s representation υ. In
order to represent a card under this implementation, we need the total number of cards in
the deck, t, and a prime number z. Each player p has her own prime number zp. Each card
is represented as a vector:
υ = (a1, a2, ..., at)

In each vector υ exists an i, 1 ≤ i ≤ t, for which there is only one ai for which ai

(mod zp) 6= 0. For that card vector, the value of the card represented is i.

Example

If z = 7 and t = 4 (player’s prime number z is seven and deck has four cards), then the
vector:
υ = (42, 21, 28, 50),
represents the card with value 4 (i = 4). That’s because only for a4 = 50, holds true that a4

(mod zp) 6= 0 (a4 (mod modzp) 6= 0 ⇒ 50mod (mod 7) 6= 0 ⇒ 1 6= 0). For all the other
i 6= 4, ai (mod zp) = 0 (42 (mod 7) = 21 (mod 7) = 28 (mod 7) = 0).

Implementation

For the implementation of the Card Vector Representation the following abbreviated java
code was compiled:

public class CardVectorRepresentation {
BigInteger [] uRepresentation ; // Castella -Roca paper Definition

1
/* ... */

}

Note the following implementation details:
uRepresentation: is an array of Big Integers storing the actual ai values.1

Constructors: A Card vector can be instantiated in three ways:

• Construct a card based on it’s value sing the prime number z provided.

• By deserialization from a string, which might originate from network communication
and

• as a the product of a card with a Permutation matrix (see Permutation Matrix Algebra,
section 2.4.3).

1Since the protocol requires very big numbers with a large number of digits, “Big Integers” (in java instances
of the BigIntegerer class) were used

7

2.4.3 Card Permutation Matrix

Definition

A deck of t cards is projected into a Permutation Matrix, which is a t · t matrix.

Π =


π1,1 π1,2 ... π1,t

π2,1
...
πt,1 πt,2 ... πt,t


where each ith row of Π is a card π(i).

Example

Suppose a permuted deck with four cards: π = (4, 2, 3, 1) and that player’s chosen prime
number z is 7. A possible Permutation Matrix is the following:

Π =


21 14 28 51
42 19 7 35
36 49 42 14
35 28 44 7


The first row represents card 4, because the 4th element is the only one for which π1,4

(mod z) 6= 0 or 51 (mod 7) = 3 6= 0, therefore π(1) = 4. For the same reason π(4) = 3,
since the 3rd element of the fourth row, is the only one for which 44 (mod 7) = 2 6= 0.

Permutation Matrix Algebra

The properties of the Permutation Matrix and the Vector representation of the cards by
construction allow the matrix multiplication of a vector card, (an q×n array) representation
with a permutation matrix (an n× n array). The result is a card with a different value.

If for example we calculate the card from the example 2.4.2 with the previous 2.4.3
permutation matrix we have:

υ ×Π =

= (42, 21, 28, 50)×


21 14 28 51
42 19 7 35
36 49 42 14
35 28 44 7

 == (4522, 3759, 4699, 3619)

The result Vector representation equals with the card with value 3, since the third element
is the only one non-zero mod zi, seven.

Equivalent Card Permutation Matrix

For each player the equivalent person matrix towards another player, is a Permutation
Matrix that has the same card values, but is being calculated using the other player’s prime
number z. As in [5]:

8

Π = {πi,j} is equivalent to Π
′

= {π′i,j} iff
for each i, j ∈ {1, ..., numberofcardsindeck}:
πi,j (mod z) 6= 0⇐⇒ π

′
i,j (mod z

′
) 6= 0 and πi,j (mod z) = 0⇐⇒ π

′
i,j (mod z

′
) = 0

Equivalent Permutation Matrices are being used in the Card Draw phase of the proto-
col 2.5.3.

Implementation

Listing 1: Abbreviated listing of Card Permutation Matrix

class CardPermutationMatrix {
private BigInteger [] [] permutationMatrix = null ;

CardPermutationMatrix (VectorDeck inputVDeck) { /* ... */ }

CardPermutationMatrix (Deck permuatedDeck , BigInteger zI) { /*
... */ }

public CardPermutationMatrix getEquivalentPermutationMatrix (
CardPermutationMatrix myMatrix , BigInteger myZ ,

BigInteger otherPlayerZ) { /* ... */ }

public void modifyRowNonModuloZ (int row , BigInteger primeZ ,
SecureRandom rand) { /* ... */ }

/* ... */
}

Again a two dimensional array of Big Integers is being used for internal representation,
while all the actions described above on the matrix have their appropriate implementation.

2.4.4 Delta and Epsilon Sets

Definition

Two more special types of sets are used in Mental Poker with two instances each, δ, ε and
their equivalents D and E. Those are defined for each player i as follows:

After a value s, such as s > t is chosen, where t is the number of cards in the deck
δ is a set of s numbers such as for each number n ∈ δ:

n (mod zi) = 0, where zi the z of player i.

ε is a set of s numbers that for number n ∈ ε:

n (mod zi) 6= 0, where zi the z of player i.

9

D is a set generated from δ, with the key of player i, Ki in each d of D is the encrypted
counterpart of δ:

for j element in δ, dj = EKi(δj).

Similarly same for the E set (for j element in ε, ej = EKi(εj).)

Example

Assuming that player’s i prime number is 7 and we have 5 cards in deck, the following is
an example of δi:

δi = [56, 35, 63, 21, 28, 42]

The set contains six numbers (one more than the deck size) all of them equal to 0
(mod 7). Similarly an ε set of the same player would be like:

εi = [71, 9, 17, 30, 51, 37]

Implementation

Listing 2: Abbreviated listing of δ set
class LcaseDeltaSet {

protected BigInteger [] numCollection ;

LcaseDeltaSet (BigInteger primeZ) { /* ... */ }
}

As we see δ is represented as an array of Big Integers. ε class inherits it.

Listing 3: Abbreviated listing of Delta set
class DeltaEpsilonSet {

MPEncryptedMessage [] BigDelta ;

DeltaEpsilonSet (LcaseDeltaSet lDelta , MPElGamal cryptoSystem) {
/* ... */}

}

Similar to the δ implementation, D and E share the same code since both represent
encrypted Big Integers.

2.4.5 Elgamal

Although not a data structure, the implementation of Elgamal’s cryptosystem had to be
customized. The rationale behind this decision has to do with the non-availability of the
appropriate libraries in the JIF environment. The algorithm is an implementation from [18]2

2pages 86 to 88

10

was adopted, taking into account secure coding techniques such as those described for coding
in cryptography in [9]. Also some similar implementations were taken into account, one of
them is [1]. A proof that Elgamal has the desired mathematical properties is here:
http://www.cs.ucla.edu/~rafail/TEACHING/WINTER-2005/L8/L8.ps

Implementation

Listing 4: Abbreviated listing of custom Elgamal Implementation
public class MPElGamal {

public MPKeyPublic getPublicKey () { /* ... */ }

public MPKeyPrivate getPrivateKey () { /* ... */ }

public BigInteger getZPlayer () { /* ... */ }

public MPEncryptedMessage encrypt (BigInteger message) { /* ...
*/ }

public BigInteger decrypt (MPEncryptedMessage mpEnc) { /* ... */
}

public String signString (String message) { /* ... */ }

public MPSignedInteger sign (byte [] hashedMessageByte) { /* ...
*/ }

public static void main (String args []) { /* ... */ }
}

The algorithm supports the encryption of a Big Integer into a pair of Big Integers as
the algorithm implies, while the decryption is also supported. Additionally this is the place
were the Elgamal capability to sign a message is utilized as well as the management of each
player’s private prime zi. The main method is used for testing since a number is encrypted
and decrypted in order to compare the results.

2.5 Algorithm Description

2.5.1 Introduction

The implementation of the chosen protocol [5] consists of two parts:

• Initialization (Sect. 2.5.2), and

• Card Draw (Sect. 2.5.3)

Players communicate only through messages (Sect. 2.1), which in this algorithm is Dis-
tributed Chain Links 2.4.1. In the following sections, the concepts are expanded and ex-
plained with additional information related to this project’s nature.

11

http://www.cs.ucla.edu/~rafail/TEACHING/WINTER-2005/L8/L8.ps

2.5.2 Initialization

In the Initialization phase of the protocol players initialize some data structures which
will be used later in the game, and broadcast the results of the computation to the other
players.

When the result of the computation should be known to other players, then it is transmit-
ted “as-is”. In the case that the result should be kept secret, a hash-signature is transmitted
as the attribute of the Distributed Notarization Chain.

More specifically:

1. Each player i generates an initial permutation of the Deck and a Secret Key Ki.

2. Each player i generates a large prime zi, which is broadcasted to the rest of the players
as a DNC-link.

3. A Card Permutation Matrix (Πi) is generated out of the initial permutation from each
player. Now a commitment of Πi is broadcasted as a DNC-link. The player will also
store the commitment for future evaluation

4. Each player will compute two sets: δ and ε (Sect. 2.4.4). Out of them the D and E
sets will be produced. D set will be broadcasted as a DNC-link.

5. Then E will be broadcasted as a DNC-Link (Sect. 2.4.4).

6. A vector representation of the deck is being generated and then encrypted from each
player.

7. The encrypted deck is being permuted and the next DNC-link containing the encrypted
deck.

8. Finally a player selected acting as group croupier. In our implementation the first player
is the croupier. computed the first DNC-link contraction and broadcasts it.

A croupier broadcast, signals the end of the initialization phase.

2.5.3 Card Draw

Card draw is being initiated whenever a player decides that a card should be drawn on
his behalf 3.

Whenever a player decides to draw a card the following process 4 occurs:

1. a u0 number is chosen, such as 0 ≤ u0 ≤ t and u0 has never been used before. Player
requesting a card (PLi) computes a w0 representation of the card with value u0 and
broadcasts a w DNC-link.

3Card Draw is simplified since we run a simulated version of the game where two players can not decide
that they want a card at the same time.

4the process has some minor modifications than that in the referenced algorithm, as stated here.

12

2. The first player (PL1) receives the link and computes w1 = w0.Π
′
1, as described in

section 2.4.3 where Π
′
1 is PL1’s equivalent permutation matrix of player that requested

the card in the previous step. w1 is broadcasted in a w DNC-link.

3. Each player PLj before i in the list responds with a wj DNC-link calculated as in the
previous step.

4. When player i receives a wi−1 DNC-link does the following:

• Permutes wi using it’s own Permutation Matrix (Πi),

• Modifies the mth row of Πi, where m the value of the received DNC-link

• choses encrypted card w
′
i which corresponds to wi from the link

• Broadcasts w
′

DNC-link

5. Players with order number bigger than the one requesting card, from the next one to
the last one do the following:

• Using the prime number z of player i (zi) and the published key of the same player,
computes an encrypted version of Π

′
j , named Πc

j which involves as well the usage of
the D and E sets computed in the initialization phase (the process here is exactly
the same with [5] and therefore not mentioned here).

• a w
′
j is computed using the equivalent multiplication of w

′
j−1 with Πc

j . The result
is being broadcasted as a w

′
DNC-link.

6. When player i receives the broadcasted w
′

DNC-link from the last player, decrypts the
link with it’s private key and gets the value of the card. Card Draw finishes here.

2.6 Implementation of Mental Poker in Java

Mental poker was initially implemented abstracting the communication channels between the
various entities, as suggested by Aslan Askarov and Andrei Sabelfeld in [3].

Initial versions of the algorithm included a communication mechanism that coordinated
the different mental poker players, without the use of threads. The inability to use threads
had as a consequence that no player could broadcast and receive messages 5 at the same time.
In order to overcome this situation, a round robin policy on broadcasting was implemented
(sect. 6.3). In later stages, this approach was abandoned in order to focus on the algorithmic
aspects of Mental Poker, simplifying the development. A demonstration video and the source
code are provided for future reference, along with the file deliverables.

In the current version each mental poker player is represented as a separate class with it’s
own private data. Communication between players is being handled by the entry point of the
program. Since players can communicate only through DNCs, which additionally should be
broadcasted, each players “next”-DNC is being requested and then passed as parameter to
all players (including the one that broadcasted it). With this implementation we emulate a
no-fault channel. In a real-world implementation this should be done by a dispatcher process
from the host of the game, or in players reside inside a LAN (as in the implementation for
the progress report, section 6.3), through broadcasted UDP packets.

5Messages were encapsulated in UDP-packets

13

Having the data structures compiled, the Java implementation looks more straightfor-
ward as the algorithm is “mapped” to Java equivalents using object orientated programming
techniques. In our implementation each player entity is mapped to a Java class abstracting
the communication mechanism. Also the players hold “fixed” positions, so they know their
respective roles and can respond to appropriate DNC broadcast links.

Because each player must remember at every given moment in which state of the initial-
ization or the card draw protocol is, a state machine approach was used, in order to formalize
the code. Each player stores his/her current state in a enumerated structure.

2.6.1 Initialization States

“State-wise” Initialization is simple since players work in parallel, without co-ordination just
broadcasting the results of their computation. Only deviation is at the end of the phase where
one player, the Croupier, the first player in this implementation, will create a contraction link.
So Croupier player has one additional state to pass from, before ending the initialization.

For initialization we have:

Listing 5: Initialization states

public enum InitializationState {
START ,
ZIBROADCAST ,
PERMUTATIONMATRIXBCAST ,
UCASEDELTASETBCAST ,
BIGEPSILONSETBCAST ,
VECTORDECKBCAST ,
PLAYERCROUPIERBCAST ,
END

}

6

2.6.2 Card Draw States

Card Draw is different from Initialization because players have different roles in a draw. As
described in the protocol in 2.5.3, we have:

1. The player requesting a card (assume PLi),

2. Players before (PLj , where j < i) and

3. Players after (PLj , where j > i)

Player Requesting Card

After a player requests a Card, he/she has to wait for the appropriate DNC-link. At
the same time the links received are stored for verification purposes, when the appropriate
DNC-link is received then after the computations an encrypted vector card is broadcasted.

6Note that the last one (end) signals the transition to the card draw phase.

14

Figure 3: State Diagram of player drawing Card

After that the player goes again into recording DNC-link broadcasts until receiving one from
the last player. This signals the end of Card Draw phase, so player returns back to being idle.

Player Before Player Requesting Card

Figure 4: State Diagram of players before the one drawing a card

Players before the one requesting a card wait for their previous one to broadcast the ap-
propriate DNC-link (Sect. 3) and then they respond with theirs. After that they return back
to being idle.

15

Player After Player Requesting Card

Figure 5: State Diagram of players after the one drawing a card

Players who are following the one requesting a card wait for their previous one to broadcast
the appropriate DNC-link (sect. 5) and then they respond with theirs. After that they return
back to being idle.

So this makes the Card Draw phase more complicated, since a player has to decide in
which state to switch next. The states for Card Draw are the following:

Listing 6: Card Draw states

public enum CardDrawState {
PLAYERIDLE ,
PLAYER1RCVW0 ,
PLAYERJRCVJMINUSONE ,
PLAYERJRCVWJPRIMEMINUSONE ,
REQUESTCARDWAITWMINUSONE ,
CARDREQUESTWAITWPRIMEN ,

}

3 JIF

3.1 Introduction to JIF

JIF [21] according to its home page is “a security-typed programming language that extends
Java with support for information flow control and access control, enforced at both compile
time and run time”.

JIF is different than other similar programming language concepts in the way that the
checks of information flow can occur both at compile time and at run time allowing a more
flexible modeling of information flow. Theoretically this leads to simpler implementations
which are also more flexible since they can solve more problems unsolved by other paradigms

16

which deploy static, only compile-time only flow checks. This is being achieved by imple-
menting the Decentralized Label Model (sect. 3.2), discussed in the next section.

3.2 Decentralized Label Model

In the paper of Andrew C. Myers [2], JIF is described in contrast with other traditional
models of information flow control. Briefly we have inside the code the concept of a Principal,
who generally represents an entity or a user on which acts behalf of. Values (sect. 3.2.1)
have attached Labels which define the access that different principals have to attached values.
Each element as well of the Decentralized Label Model as well as the interactions among those
elements are being described in the following sections.

3.2.1 Values

Values represent classes or basic types of the programming language. Additionally to the
traditional model we have the “input channels” and the “output channels”. “Input channels”
represent points of entry of information in the program, and therefore can only be read.
“Output channels” represent points where information is leaving the program, therefore can
only be written.

3.2.2 Principals

Principals represent users or groups of users that interact within the system. Each value
belongs to a principal, as we will see with the label concept below 3.2.3. The additional
feature that JIF has in comparison with other paradigms is the capability of a principal
to delegate its authority to others, with acts-for relationships. By default there are two
principals available the “no-one” () and the “everyone” the former “acts-for” any principal,
the latter is “acted-for” by any principal. These are used to ease the programming effort in
some operations and introduce default behaviors.

3.2.3 Labels

Policies are implemented in JIF with labels. Each label constitutes of two sets of Princi-
pals, the reader set, those who can read-to a value, and the writer set, those who can write-to
a value. The union of all principals in the reader set constitutes the effective reader set, which
represents all principals that can read a value. While the intersection of the principals of the
writer set, constitutes the principals that can write to a value.

These concepts allow two interesting actions in code and therefore in run-time level: the
declassification and the restriction. With the declassification the reader set, therefore the
effective readers, can be extended, allowing more principals to write to the value. While
with a restriction action removes readers and/or adds owners. With these concepts, action
policies can be implemented inside the code at run time as well as compile-time. While
policies can only be implemented only at compile-time in other relevant paradigms, they can
also be implemented at run-time here. The additional ways to define and implement a policy

17

constitute the additional capabilities of JIF and theoretically lead to more efficient and easy
to read and evaluate code, in order to detect implicit and explicit flows.

3.2.4 Relabeling

A question rises on how declassification occurs internally. This is being done with the
concept or re-labeling: a new value with a different label is being generated and the contents
of the previous value are being copied to the new.

3.3 Implicit and Explicit flows

JIF also aims to solve the issue of explicit and implicit information flows:

• we have an explicit flow when information flows from a more restrictive to a less
restrictive label,

• implicit flows occur when mixing variables of two different information classes and
contents of one can be assumed from the values of the other.

Listing 7: Example of an explicit flow from Carnegie Mellon Information Security classes [10]

public class SecretMessages [principal alice , principal bob]
{
String{alice :} aliceInstructions ;
String{bob :} bobInstructions ;

public SecretMessages (String{alice :} ai , String{bob :} bi) {
aliceInstructions = ai ;
bobInstructions = bi ;
}
public String{bob :} leak () {
bobInstructions = aliceInstructions ;
return bobInstructions ;
}
}

Listing 8: Example of an implicit information flow from [2]

x = 0 ;
if b
{

x = 1 ;
}

Here from the value of x, we can assume implicitly information about b.

18

3.4 Decentralized Label Model in JIF

In this section by presenting some working code or syntax examples, the way the theory be-
hind the Decentralized Label Model will be illustrated and explained.

3.4.1 Example: Variable Declaration

First example is a variable declaration from [21]:

Listing 9: Variable declaration example

int {Alice : Bob} x ;

Value x, an integer is owned by principal Alice. Principal Bob can read it.

3.4.2 Example: Declassification

Second example, is an example of a declassification (sect. 3.2.3) which leads to an output
to screen7:

Listing 10: Declassification example

PrintStream [{ }] output = declassify (runtime . stdout (new label {})
, {}) ;

if (output == null) return ;

int{Alice :} iAlice = 3 ;
int aliceDec ;
aliceDec = declassify (iAlice , {}) ;
output . println ("aliceDec: " + aliceDec) ;

Listing 10 is in a way both a “Hello World” code example as well as a declassification one.
First an output channel is acquired label with the less restrictive label {}. Then the iAlice
variable (named that way to identify an integer that belongs to principal Alice), is declassified
to the less restrictive principal as well. Note that this is being done through relabeling (sect.
3.2.4). After that, the print-line call is legitimate and can be executed.

3.4.3 Example: Array Handling

Arrays are different in JIF due to the need of having two labels, one for the elements of
the array and one for the array itself, as stated in [4]. This is being done in order to avoid
the so-called “laundering attack”.

7Code was created as part of this report, is publicly available and can be located at: http://stackoverflow.
com/questions/1037635/java-with-information-flows-output-to-screen

19

http://stackoverflow.com/questions/1037635/java-with-information-flows-output-to-screen
http://stackoverflow.com/questions/1037635/java-with-information-flows-output-to-screen

Listing 11: This example is from the JIF-exercises [16]:
String {L } [] { L} larr ;

Here larr is an array of Strings where both (array and elements) belong to label L.

3.4.4 Example: Classes, Method signatures and Exceptions

Apart from the method signatures, JIF code is generating a large number of Exceptions
that should be handled inside the procedure or thrown. In this example we have a setter,
which in a casual “setter” procedure.

As we see in this figure from [2]:

Figure 6: Procedure Syntax definition in JIF

Listing 12: The concept above is illustrated from an example from the JIF-exercises [16] as
well:

public void setAt{L}(int {L} i , String {L} s) :{ L}
throws ArrayIndexOutOfBoundsException , ArrayStoreException ,

NullPointerException {
/* Code Ommited */

}

3.5 Criticism of JIF

As with every programming concept or tool in the software sphere, JIF is not immune to
criticism, both from outside and inside its programming community. Critique can be basically
summarized into two positions:

• “JIF is too immature” as well as “JIF will never happen” 8 and

• “JIF provides a false sense of security” which usually pairs with “JIF is expensive”.

For the rest of this section these two arguments will be briefly presented.
The “immaturity” argument has to do with the learning curve required to effectively write

in JIF. This happens for two reasons, which together create a chicken and egg situation. Apart
8in the “IPv6 will never happen” concept

20

from programming with information flows is by definition hard, since first some additional
concepts have to be mastered. Some, but not all, of them are the explicit and implicit flows,
the concept of the side-effects, the high and the low level of the flow, the Principal algebra,
etc. For this reason it is difficult to introduce these concepts into inexperienced or not too
experienced programmers (they first need to know how to program and then on top program
in some concepts), moreover amateurs or self-taught professionals. This more or less leads to
a situation where in order for one to engage one needs to have an MSc-equivalent level and
experience. This severely limits the potential JIF users, and the situation does not improve
with the state of the current toolset which is inconsistent and has different stakeholders with
different aims and desire for participation.

Hence if we had more people interested, there would be a bigger demand for quality
tools and tighter integration. Similarly a better programming experience would attract more
developers or generally people interested since the barrier of entry would be lower. The only
way to break such a vicious circle is by large financial investments. Further discussion on
this, however, is beyond the scope of this dissertation.

Another argument related to the maturity of the language, has to do with the fact that it
took other such concepts more than 15 years to get established. The examples are numerous,
the more obvious are version control, where many good tools were available in the early 1990’s
or Object Orientation, which was available many years before it became mainstream. Perhaps
JIF is still in that incubation period, or does not yet have the critical mass it needs in the
security software development community.

Regarding the “false sense..” argument, it is very common for a developer/project leader
to fall into the fallacy of believing that a correct information flow modeling is a panacea
that will solve all the project’s security-related issues. Although this initially seems like
an exaggeration, it is easy to fall into this category and ignore other aspects of a security
related project, as the correct choice and implementation of crypto-systems or other secure
coding approaches and practices. It is very easy to dwell into an information flow approach,
something that JIF distribution does not discourage with the limited availability of ported
programming libraries from the Java Runtime Environment. An obvious example is the
custom implementation of a cryptographic algorithm from this project, something that can be
considered a classic secure programming “mistake” (duplication of effort, use of an unproven
algorithm, etc).

3.6 Tools

In this section a small review of tools available for creating programs in the JIF environment,
at the date of writing this report is being presented.

JIF Distribution: The main distribution [21] offers the main compiler and the runtime
environment. There are two issues here:

It is a source-only distributions and some time and familiarity with java compilation pro-
cesses are needed in order to make JIF usable and some custom tweaks of the host system.
The whole process is described in an Appendix of this report (appendix 6.2), since such a tu-
torial is not available. Different versions have different features and different level of maturity,
considering bugs and capabilities. Therefore concerning the needs of the particular project,
the choice must me made on the version that will be used. Also IDE (Eclipse) support is only

21

available into one of them.

JIF Eclipse [15]: JIF eclipse is a plugin for the popular eclipse platform. It assists
the programmer with the creation and manipulation of programs, as well as pre-compilation
analysis so that the programmer can immediately see an error before compilation, saving
development time. It also offers suggestions which may help fixing such issues.

SIGGEN: From it’s homepage 9, “Siggen can automatically generate signatures for your
Java and JIF files. It does not examine the bytecode to provide labels that match the security
behavior of a library function”

3.7 Learning JIF

For the course of this project the following JIF learning material was identified:

• JIF’s reference manual [20]: Which has reference material on each version.

• JIF Examples: A set of examples like the well known Battleship game are included
in the compiler package.

• JIF Exercises [16]: From the Chalmers University a series of exercises and tutorials
demonstrated various concepts.

• Blog entries: Some relevant references on internet: http://www.napes.co.uk/blog/
decentralized-label-model/

• Other projects: In the course of this project another MSc project was identified on
implementing a “real-world” application in JIF, particularly a model of the French
health care system [13].

• JIF mailing list: A low-activity mailing list by Cornell University.

Generally the learning material available falls into two categories: Firstly there is the
material available inside academic papers submitted to conferences, publications etc. This
generally emphasizes to the aspect that the author of the paper wants to for each relevant
subject, without getting into the general context. Secondly there are some large scale imple-
mentations, such as Civitas 10, or Fabric 11.

The problem for the newcomer to the field is that there is no “middle ground” material
available to aid in the course of getting the elementary concepts and combine them to a
working application.

9http://www.cse.psu.edu/ dhking/siggen/
10Civitas: Toward a secure voting system. In Proc. IEEE Symposium on Security and Privacy, pages

354368, May 2008.
11”Fabric: A Platform for Secure Distributed Computation and Storage”, Department of Computer Science,

Cornell University

22

http://www.napes.co.uk/blog/decentralized-label-model/
http://www.napes.co.uk/blog/decentralized-label-model/

4 Mental Poker in JIF

4.1 Introduction

This project originally aimed at producing a Mental Poker implementation in Java with
Information Flows. As it will be discussed later, this was extremely difficult to produce any
usable result in the course of this project. In this section a summarization of the effort done
will be presented as well as the material produced and the accompanying source code.

4.2 Methodology chosen

The methodology chosen to implement this project was inspired by [4], which is a paper
based precisely on the experience of implementing the mental poker in JIF, as well as [13]
which describes and suggests a similar paradigm. The first objective was the production of
working code in java, so that the programmer can be accustomed with the protocol and the
concepts around it. At some point in parallel, training in JIF takes place. After both of
those have finished the programmer is capable of implementing the given algorithm in JIF.
Different approaches lead either to very lengthy development times or just to project failure.

But even in this case, the workload can not be considered easy. Quoting [4]:

... The baseline implementation consumed around 60 man-hours of development
work. The JIF implementation and distributed JIF implementation consumed
150 and 80 man-hours respectively, excluding the time to learn JIF. The case
study indicates that although lifting Java code to JIF takes some experience to
master, the security-typed result is not significantly distant from the original code.
Further- more, we have developed patterns for secure programming (cf. Section
5) to make programming with security types clearer and more convenient. ...

What is missing from the quoted text is an estimation of “time required to learn JIF” and
more importantly for this project, “how” can someone learn JIF. It appears from anecdotal
evidence that usually before someone is assigned to a similar project, a MSc level semester
course in secure programming with information flows is provided, usually with coursework
and laboratory exercises in JIF. The process of self-teaching JIF, which was followed on this
project in addition with the level of the educational available material (sect. 3.7), made the
process harder which some times resulted to a trial-and-error approach with poor, at best,
results.

4.3 Annotations

In the introductory paper to JIF [3] there were two motivational examples: a bank application
and a medical research one. In these examples an annotation of information flow was used to
illustrate the flow of information on the various principals.

In the examples provided the following annotations are being used:

Symbol Usage
Circle Principal within the system

Arrows Information flow between principals
Square Information flowing or Database

Double Circle Trusted Agents that declassify information

23

In the first example, as shown in Sect. 4.3 we have the most simplified version of Mental
Poker initialization phase among two players, Alice and Bob. Alice is assigned the role of the
Croupier, therefore at the end of the initialization phase, she has to endorse Bob’s contraction
chains and produce a contraction link. That link has to be declassified and send back to Bob
(which at this example represents all other players).

Figure 7: Mental Poker between Alice and Bob

The following step was to generalize this figure, into a multiplayer scenario, utilizing
more JIF capabilities. Players mean of communication Distributed Notarization Chains (sect.
2.4.1), we wanted each player to have a coordinated picture of the game with each of the other
mental poker players represented as a principal within the system. So each player j, would
hold an array of Players i, where i 6= j. Each of them would hold their DNC-chain and
would release what information is needed to current player j. In order for this to happen
each DNC-received link, from an Input Channel (sect. 3.2.1) has to be identified, checked
for validity and then elevated to be assigned to player’s i DNC-chain. The only way to do
this, as we see in figure (figure 4.3) is by having an input channel with the lowest principal,
{*}, and then direct the input to an Extractor which will elevate it to higher levels. Then
when the current player (Alice) needs a specific piece of information, it can be declassified
and assigned.

24

Figure 8: DNC link extraction

4.4 Implementation

Some examples of implementing parts of the Mental Poker protocol in JIF will be presented
here.This will help the demonstration of the programming experience, the concepts and some
language idiosyncrasies.

4.4.1 Uplifting a Java class

This is one way of porting an already existing java library to JIF. By supplying only the
signatures, after compilation, the runtime environment can map the JIF signature to a Java
one and execute it as desired. Please note that there is no check if the implementation maps
to existing code and that some times the compilation process is rejected. Here we can see the
“{this}” principal, which implies the current class status. Also the line:

private static int JIF SIG OF JAVA CLASS$20030619 = 0;
Which according to JIF’s creators, “is a hack to let the JIF compiler to know that the class
provides a JIF signature for an existing Java class [20]”.

Listing 13: Example of uplifting a class to JIF

package java . util ;

public
class Random /*implements java.io.Serializable*/ {

25

private static int __JIF_SIG_OF_JAVA_CLASS$20030619 = 0 ;

/** use serialVersionUID from JDK 1.1 for interoperability */
static final long serialVersionUID = 3905348978240129619L ;

public Random () {}

public Random (long{this} seed) {

}

synchronized public native void setSeed (long{this} seed) ;

public native void nextBytes (byte{this } [] { this} bytes) ;

public native int{this} nextInt () ;

public native int{this ; n} nextInt (int n) ;

public native long{this} nextLong () ;

public native boolean{this} nextBoolean () ;

public native float{this} nextFloat () ;

public native double{this} nextDouble () ;

synchronized public native double{this} nextGaussian () ;

}

4.4.2 Porting a Java class

In this section an example of porting a Java data structure to it’s JIF equivalent will be
provided along with some commendation on the programming experience. The class chosen
is a simple data structure that holds three big integers as shown in Listing 14, and can only
be ported in JIF as shown in Listing 15:

Listing 14: Java’s Elgamal public key

class MPKeyPublic {
public BigInteger p ; //El Gamal's p, prime number
public BigInteger g ; //El Gamal's g, random number less than
public BigInteger y ; //El Gamal's y, y = (g^x)mod(p)

}

26

Listing 15: JIF Elgamal public key

import java . io . PrintStream ;
import java . lang . Object ;
import java . math . BigInteger ;

class MPKeyPublic [label L] {

private static int __JIF_SIG_OF_JAVA_CLASS$20030619 = 0 ;

public BigInteger {L} p ; //El Gamal's p, prime number
public BigInteger {L} g ; //El Gamal's g, random number less than

p
public BigInteger {L} y ; //El Gamal's y, y = (g^x)mod(p)

public void setP{L ; newP }(BigInteger{L} newP) : {L ; newP} {
this . p = newP ;

} ;

public void setG{L ; newG }(BigInteger{L} newG) : {L ; newG} {
this . g = newG ;

} ;

public void setY{L ; newY }(BigInteger{L} newY) : {L ; newY} {
this . y = newY ;

} ;
}

We can see programming elements such as the flagging of JIF for the class and the label:
{L; newX}, which points that the higher and lower level of the caller must be the intersection
of the label set (L) and the variable (newP or newG or newY). For this reason a “setter”
function must be added, which was not as obvious as in the Java implementation.

4.4.3 Implementing a JIF class

This is an example in a so called “from scratch” programing approach, where the Elgamal
algorithm had to be re-implemented since the underlying data structures had changed signif-
icantly. For simplicity the initialization is demonstrated.

Listing 16: The code is so different from the initial java implementation that it had to be
completely rewritten.

. . .
MPElGamal{L ; this } () {

int{L} randomBL = this . RandomBitLength ; //saves from side
effect

//initialization

27

Random{L} rnd = new Random () ;
publicKey = new MPKeyPublic [L]{ L } () ;
privateKey = new MPKeyPrivate [L]{ L } () ;
//assignments
BigInteger{L} biPublic ;
try {

BigInteger{L} pubP = new BigInteger{L}(randomBL , rnd) ;
publicKey . setP (pubP) ;
BigInteger{L} pubG = new BigInteger{L}(RandomBitLengthLess ,

rnd) ;
publicKey . setG (pubG) ;
BigInteger{L} privX = new BigInteger{L}(

RandomBitLengthLess , rnd) ;
privateKey . setX (privX) ;

BigInteger{L} pubY = pubG . modPow (privX , pubP) ;
publicKey . setY (pubY) ;

} catch (java . lang . NullPointerException npExp) {
//do nothing

} catch (java . lang . IllegalArgumentException ilargExp) {
//do nothing

} catch (java . lang . ArithmeticException arExp) {
//do nothing

}
}
. . .

5 Evaluation

Although the desired result was not one was not reached per se, the experience was definitely
positive, beneficial and educational in every aspect. During the course of this project there
was exposure to diverse aspects of research and computer science concepts, such as software
engineering, cryptography, mathematic, language-based security and their implementations.
Additionally there was exposure to areas that are still under development which gave the
experience of how concepts, ideas and implementations evolve in time.

Difficulties faced had to do with solving problems that in some times required knowledge
of the domain in many aspects, such as programming, while in other cases there was need to
invest in depth by reading the same references again and again, without an indication of a
solution or knowing that the effort is pointed towards towards the right direction.

The project was over ambitious in it’s targets and did not reach it’s goals in full extent.
However there has been a tremendous amount of work done, which can be utilized in further
attempts as a foundation for future extensions. It also gave a fair amount of exposure on
how research is being conducted and how outcomes and conclusion of a person’s or team’s
research propagate to the rest of the academic community and influence future work.

28

5.1 Future Work

In case of further expansion to this project the following actions could be considered as logical
next “steps”:

The next logical step with respect to Mental Poker is the further implementation of the
protocol, according to its specifications. Moreover, Code Verification could be implemented
and incorporated in the existing project. Other directions could include Exceptional cases as
a termination sequence when a player leaves the game 12, or when a connection is dropped.
Finally a “real world” situation with formal network code instead of interprocess communi-
cation.

There are numerous approaches to extending the JIF aspect of this project. After some
training in the language, the programming environment and the relevant JIF patterns. Ad-
ditionally after familiarization with the tool-chain, a formal implementation can be produced
from the mental poker code emphasizing on the aspects of Information Flow.

6 Appendices

6.1 Appendix A - Project Description

Java with Information Flow (JIF) is an extension to Java which provides security label an-
notations as part of the program and uses those labels to control information flow through a
type system. Using such a type system it is possible to implement confidentiality and other
security policies using the construction of the program. The aim of this project is to learn
about JIF and writing programs in JIF, then to do a series of small programs building up to
a significant one. A good possibility is an implementation of mental poker. This is a class
of protocols in which there is on-going interest. using formal methods like state charts, B
method and Perfect Developer to ensure critical properties A recent paper based on an MSc
project implementation of such a mental poker protocol could form a useful jumping off point.

6.2 Appendix B - Install JIF on ubuntu linux

A. Install Sun’s java

Due to issues with Sun’s openness of Java packages, it is possible that a sun-java, which is the
most preferable for JIF, is not installed by default on various linux distributions, including
Ubuntu. This is about to change but not at the moment. If you are reading this a year or
more after 2009, then probably this section is obsolete.

Following the instructions from url: https://help.ubuntu.com/community/Java, (which
is to be merged in the server guide, so another location to check is: https://help.ubuntu.
com/8.10/serverguide/C/index.html) and
https://help.ubuntu.com/community/JavaInstallation, type in a new terminal:
sudo apt-get install sun-java6-bin
for the JRE, which asks for accepting sun’s terms and then:
sudo apt-get install sun-java6-jdk
for the SDK.

12Action which is not covered by this protocol

29

https://help.ubuntu.com/community/Java
https://help.ubuntu.com/8.10/serverguide/C/index.html
https://help.ubuntu.com/8.10/serverguide/C/index.html
https://help.ubuntu.com/community/JavaInstallation

This should be OK from a clear installation of the OS, where there is no previous version
of Java installed. If there is another version already installed then there should be a switch,
described in the first url (sect. 6.2), which involves the following:

Open a Terminal window
Run
sudo update-java-alternatives -l
to see the current configuration and possibilities.
Run sudo update-java-alternatives -s XXXX to set the XXX java version as
default. For Sun Java 6 this would be
sudo update-java-alternatives -s java-6-sun
Run java -version
to ensure that the correct version is being called.

JAVA HOME variable

JAVA HOME variable, which needs to exist for various scripts, at the moment of installation
java was installed at: /usr/lib/jvm/java-6-sun-1.6.0.10/, so the /etc/bash.bashrc should
be edited:
sudo gedit /etc/bash.bashrc
and the following line has to be added:
export JAVA HOME=/usr/lib/jvm/java-6-sun-1.6.0.10/

In order to check for correctness use the following command:
echo $JAVA HOME
in a new terminal window.

B. Install g++

Gnu g++ compiler is needed for compilation of JIF, therefore:
sudo apt-get install g++

C. Selection of JIF version

Normally someone might want to run the latest version of JIF available, in order to use the
latest features, there is only one reason for doing otherwise: Eclipse-IDE.
The plugin for Eclipse, Jifclipse, which allows the use of the IDE in developing JIF appli-
cations, is unfortunately only compatible with JIF version 3. In the case that eclipse is not
needed, any version can be installed. Either way compilation is exactly the same.

B. JIF compilation

JIF compilation scripts use ant for building mechanism, so if it is not installed:
sudo apt-get install ant

30

For the following installation steps, instructions in the “README” file inside the jif folder,
are being followed. Before that it is useful do define JIF environment variable, in the same way
as JAVA HOME. Many developers prefer to install JIF in their own account and not system-
wide, therefore the export command should be appended in /.bashrc. gedit /.bashrc
and append directory’s location. Example: export JIF=/home/of/user/jif
For system wide, edit /etc/bash.bashrc, the same file for JAVA HOME and update accord-
ingly.

For the rest of the installation this directory will be named $JIF, and the steps in the
“README” file are followed:

In a new Terminal window
Run
cd $JIF
ant configure
which builds the runtime environment, for
the compiler:
ant

Now JIF runtime with the possible addition of compilation should have been installed. It
is advised to compile and run the Battleship game provided with the language in order to
check the installation.

E. JIFCLIPSE

If the eclipse platform is not installed: sudo apt-get install eclipse
After starting the IDE, instructions from
http://siis.cse.psu.edu/jifclipse/
can be followed.
Generally the installation is similar to one of a typical eclipse-plugin, with some additional
actions of course.

1. Select: Help → Software Updates → Find and Install

2. Choose “Search for new features to install”

3. Click “New remote site”

4. Name: Jifclipse,
URL: http://siis.cse.psu.edu/jifclipse/update

5. Click “Finish”

6. Select check box for “Jifclipse” and click “Next”

7. “Jifclipse feature 2.0.0” and read/accept license agreement

8. Click “Next” and “Finish”

9. Restart Eclipse

The only differences with the official instructions before was Eclipse’s prompt to install an
unsigned feature, followed by Eclipse prompting to restart itself.

31

http://siis.cse.psu.edu/jifclipse/
http://siis.cse.psu.edu/jifclipse/update

The final step of Eclipse installation has to do with patching the JIF installation: 13

1. Download the JIF compiler and follow the instructions provided to compile
the JIF runtime (at least).
Currently you must download JIF 3.0.0; we are working on integration of
Jifclipse with more recent releases of JIF.

2. Download our updated jif.jar and build file: JIF updates for Jifclipse.

3. Unzip jifclipse-aux.zip into the JIF directory (the jifclipse-build.xml file
should be in the main JIF directory, /usr/local/jif-3.0.0, e.g. and the jif.jar
will be placed into /usr/local/jif-3.0.0/lib). You should be prompted whether
you want to replace lib/jif.jar and you should answer “yes”. Note: you MUST
compile the JIF runtime before performing this update.

4. (If you needed to edit the build.xml file for JIF to add the headers include
directory, the same edit will be required for the Jifclipse build file.)

5. Rebuild the JIF lib and SIG jars by running ant:
ant -f jifclipse-build.xml

6. Start up Eclipse and use Project → New → JIF → JIF Project to create a
new JIF Project

7. When creating a new JIF project, it should be configured to point to the base
directory of the JIF compiler. See the Startup Tutorial for a demonstration.

In step 7 there are no instructions, since the how-to is in video only format.
In the eclipse: File → New → Project,
then select: “New Jif Project” and provide a name for the project, then click next. After
this step there are two dialog boxes: Base directory for JIF compiler and Path to javac
post compiler, where the appropriate directories must be set, in this case: /usr/local/jif-3.0.0
changed to /home/of/user/jif and /usr/lib/jvm/java-1.5.0-gcj-4.3-1.5.0.0/jre/../bin/javac
to /usr/lib/jvm/java-6-sun-1.6.0.10/bin/javac

13Note that from the quoted text (1) and (2) have already been done in steps (A) (B) and (D)

32

6.3 Appendix C - Directory structure of deliverable

List of files included in final report:

additional folder

jif-exercises: solutions for JIF exercises [16].

MentalPoker.bib: comprehensive list of all papers about mental poker, compiled in
2007.

december08 report: The preliminary report submitted on September 2008 which includes
the code for the first steps of mental poker and a communication mechanism that avoids
the use of threads .

implementation code: Holds the code generated for this project:

java code: Mental poker implementation in Java

jif code: Mental poker implementation in JIF

33

6.4 Appendix D - Java source code

File listing of Java Files

6.4.1 implementation code/java code/CardDrawState.java

public enum CardDrawState {
PLAYERIDLE , // (1) in card draw state diagrams
PLAYER1RCVW0 , // (2)
PLAYERJRCVJMINUSONE , // (3)
PLAYERJRCVWJPRIMEMINUSONE , // (4)
REQUESTCARDWAITWMINUSONE , // (5)
CARDREQUESTWAITWPRIMEN , // (6)

}

6.4.2 implementation code/java code/CardPermutationMatrix.java

import java . math . BigInteger ;
import java . security . NoSuchAlgorithmException ;
import java . security . SecureRandom ;

class CardPermutationMatrix {
private BigInteger [] [] permutationMatrix = null ;
/*
* Assumption: R1 and R2 of bit commitment protocol ("Bit

Commitment Using one-way functions",
* Handbook of Applied Cryptography p86-88), are BigInteger
*/

private BigInteger commitmentR1 = null ;
private BigInteger commitmentR2 = null ;
private String commitment = null ;

final static int RandomNumberOfBits = 5 ;
final static int CryptoError = −3; //Exit code

/*note: CommitmentSeperator must be different than the one used
in network transport

*/
final static String CommitmentSeperator = "_" ;

CardPermutationMatrix (VectorDeck inputVDeck) {
int dimensionSize = Deck . numberOfCards ;

34

permutationMatrix = new BigInteger [Deck . numberOfCards + 1] [
Deck . numberOfCards + 1] ;

//TODO: zero the 0 column and 0 row
for (int row=0; row <= dimensionSize ; row++) { //zero the 0

th column
permutationMatrix [0] [row] = BigInteger . ZERO ;

}
for (int column=0; column <= dimensionSize ; column++) { //

zero the 0th row
permutationMatrix [column] [0] = BigInteger . ZERO ;

}

for (int column=1; column <= dimensionSize ; column++) {
//get Card at position of Column:
CardVectorRepresentation currentCard = inputVDeck .

getCardAtPosition (column) ;
for (int row=1; row <= dimensionSize ; row++) {//get

each BigInteger of the card ansd assign it
permutationMatrix [column] [row] = currentCard .

getVectorPosition (row) ;
}

}
}

/**
* Builds a card permutation on Deck permuatedDeck , using

Players Z (zI)
*/
CardPermutationMatrix (Deck permuatedDeck , BigInteger zI) {

int numberOfCardsInDeck = Deck . numberOfCards ;
permutationMatrix = new BigInteger [numberOfCardsInDeck] [

numberOfCardsInDeck] ;
SecureRandom secRnd = new SecureRandom () ;
BigInteger randomBI = null ;

for (int row = 0 ; row < numberOfCardsInDeck ; row++) {
int currentCardValue = permuatedDeck . getCardAtPosition

(row) ;
for (int column= 0 ; column < numberOfCardsInDeck ;

column++) {
randomBI = new BigInteger (RandomNumberOfBits ,

secRnd) . abs () ;

BigInteger productRandomZi = zI . multiply (randomBI)
;

permutationMatrix [row] [column] = productRandomZi ;

35

if (currentCardValue == column) { //add number so
that it will not me a multiple of zI
randomBI = new BigInteger (RandomNumberOfBits ,

secRnd) . abs () ;
if (randomBI . compareTo (BigInteger . ZERO) == 0) {

randomBI = BigInteger . ONE ;
} else { //number to add must be less than zI

randomBI = randomBI . mod (zI) ;
}
//System.out.println("random:" + randomBI + "

compare with zero:" + randomBI.compareTo(
BigInteger.ZERO) + " compare with zi" + zI.
compareTo(randomBI) + " Zi: " + zI);

permutationMatrix [row] [column] =
permutationMatrix [row] [column] . add (randomBI)
;

}
}

}

}

BigInteger [] [] getPermutationMatrix () {
if (permutationMatrix != null) {

return permutationMatrix ;
} else {

return null ;
}

}

public CardPermutationMatrix getEquivalentPermutationMatrix (
CardPermutationMatrix myMatrix , BigInteger myZ ,

BigInteger otherPlayerZ) {
int numberOfCardsInDeck = Deck . numberOfCards ;
BigInteger [] [] equivArray = new BigInteger [

numberOfCardsInDeck] [numberOfCardsInDeck] ;
for (int row = 0 ; row < numberOfCardsInDeck ; row++) {

for (int column= 0 ; column < numberOfCardsInDeck ;
column++) {
BigInteger currentCheck = this . permutationMatrix [

row] [column] ;

//make currentAssigned equals to zero mod
otherPlayerZ

BigInteger currentAssigned ;
currentAssigned = currentCheck ;

36

currentAssigned = currentAssigned . subtract (
currentAssigned . mod (otherPlayerZ)) ;

if (! currentCheck . mod (myZ) . equals (BigInteger . ZERO)
) {
BigInteger randomAdd = new BigInteger (

currentCheck . bitLength () , new SecureRandom
()) ;

randomAdd = randomAdd . mod (otherPlayerZ) ;
if (randomAdd . equals (BigInteger . ZERO)) {

randomAdd = BigInteger . ONE ;
}
currentAssigned = currentAssigned . add (

randomAdd) ;
}
equivArray [row] [column] = currentAssigned ;

}
}

CardPermutationMatrix resultPermMatrix = new
CardPermutationMatrix (equivArray) ;

return resultPermMatrix ;
}

public void modifyRowNonModuloZ (int row , BigInteger primeZ ,
SecureRandom rand) {
//some checks:
if ((row<1) | | (row > Deck . numberOfCards)) {

System . err . println ("error row out of range") ;
System . exit (−4) ;

}

if (rand == null) {
rand = new SecureRandom () ;

}

for (int i=1; i <= Deck . numberOfCards ; i++) {
BigInteger randomMultiple = new BigInteger (primeZ .

bitLength () − 2 , rand) ;
randomMultiple = randomMultiple . multiply (primeZ) ;
randomMultiple = randomMultiple . add (BigInteger . ONE) ;
permutationMatrix [i] [row] = randomMultiple ;

}
}

private CardPermutationMatrix (BigInteger [] [] BIArray) {

37

this . permutationMatrix = BIArray ;

}

public String getCommitment () {
if (commitment == null) {

produceCommitment () ;
}
return commitment ;

}

private void produceCommitment () {
//Following the algorithm:
//(1) Alice generates two random-bit strings R1 and R2:
SecureRandom secRnd = new SecureRandom () ;
commitmentR1 = new BigInteger (RandomNumberOfBits , secRnd) .

abs () ;
commitmentR2 = new BigInteger (RandomNumberOfBits , secRnd) .

abs () ;
//(2) Alice creates a message consisting of her random

strings and
// the bit she wishes to commit to (it can actually be

several bits)
// (R1, R2, b)
byte [] messageR1 = commitmentR1 . toByteArray () ;
byte [] messageR2 = commitmentR2 . toByteArray () ;
byte [] messageb = null ;
//assumption , use a sha-1 instead of the whole data

structure
try {

messageb = Sha1Signature . getSHA1Byte (permutationMatrix
. toString ()) ;

} catch (NoSuchAlgorithmException e) {
// TODO Auto-generated catch block
e . printStackTrace () ;
System . err . println ("Sha1 Algorithm does not exist in

this system") ;
System . exit (CryptoError) ;

}

int messageLength = messageR1 . length + messageR1 . length +
messageb . length ;

//concatenate: bit by bit
byte [] message = new byte [messageLength] ;
for (int i=0; i < messageR1 . length ; i++) {

message [i] = messageR1 [i] ;

38

}
int offset = messageR1 . length ;
for (int i=0; i < messageR2 . length ; i++) {

message [offset + i] = messageR1 [i] ;
}
offset += messageR2 . length ;
for (int i=0; i < messageb . length ; i++) {

message [offset + i] = messageb [i] ;
}

//(3) Alice computes the one-way function of the message
and sends

//the result, as well as one of the random strings, to Bob
.

//H(R1,R2,b), R1
try {

commitment = Sha1Signature . getSha1 (message . toString ())
;

} catch (Exception exp) {
exp . printStackTrace () ;
System . err . println ("Sha1 Algorithm does not exist in

this system") ;
System . exit (CryptoError) ;

}
commitment += CommitmentSeperator + messageR1 . toString () ;

}

public String toString () {
String result = "" ;
int numberOfCardsInDeck = Deck . numberOfCards ;
for (int row = 0 ; row < numberOfCardsInDeck ; row++) {

for (int column= 0 ; column < numberOfCardsInDeck ;
column++) {
result += permutationMatrix [row] [column] . toString

() ;
if ((row != (numberOfCardsInDeck − 1)) | | (column

!= (numberOfCardsInDeck − 1))) {
result += ", " ;

}
}

}
return result ;

}

public static void main (String args []) {
//generate initial permutation and then a permutation

matrix of it

39

//Corresponds to step (e) of Initialization:
//Build the card permutation matrix P_i corresponding to

p_i using z_i
BigInteger sillyPrime = new BigInteger ("7") ; //this should

originate from player's key generation
Deck initialPlayerDeck = new Deck () ;
CardPermutationMatrix initialPermMatrix = new

CardPermutationMatrix (initialPlayerDeck , sillyPrime) ;
System . out . println (initialPermMatrix . toString ()) ;
//System.out.println("Signature" + Signature.getSha1(

initialPermMatrix.toString()));
System . out . println ("Commitment: " + initialPermMatrix .

getCommitment ()) ;

}
}

6.4.3 implementation code/java code/CardVectorRepresentation.java

import java . math . BigInteger ;
import java . security . ∗ ;

/*
* First in (m) of initialization algorithm:
* "... generate the vector representation of the t cards in Deck.

..."
* note: first one is zero
*/

public class CardVectorRepresentation {
BigInteger [] uRepresentation ; // Castella -Roca paper Definition

1
int totalNumOfCards = −1;

CardVectorRepresentation (int cardValue , int totalNumOfCards ,
BigInteger primeNumberZ , SecureRandom sec) {
if (sec == null) {

sec = new SecureRandom () ;
}
this . totalNumOfCards = totalNumOfCards ;

uRepresentation = new BigInteger [totalNumOfCards + 1] ;
/* populate the array with elements equal zero (mod

primeNumberZ)

40

* and then add to the i-th element, so that the value of
the card will be i

*/
int numBits = primeNumberZ . bitLength () − 2 ; //order less
uRepresentation [0] = null ;
for (int i = 1 ; i <= totalNumOfCards ; i++) {

BigInteger multiplier = new BigInteger (numBits , sec) ;
uRepresentation [i] = multiplier . multiply (primeNumberZ) ;
//multiple therefore equals zero mod primeNumberZ

}

BigInteger addition = new BigInteger (numBits , sec) ;
addition = addition . mod (primeNumberZ . subtract (BigInteger .

ONE)) ;
if (addition . equals (BigInteger . ZERO)) {

addition = BigInteger . ONE ;
}
uRepresentation [cardValue] = uRepresentation [cardValue] . add

(addition) ;
}

BigInteger getVectorPosition (int position) {
if ((position < 1) | | (position > totalNumOfCards)) { //

bound check
return null ;

}
return uRepresentation [position] ;

}

CardVectorRepresentation (String inputString , int
totalNumOfCards) throws Exception {
String [] vectorItems = inputString . split (" ") ;
if (vectorItems . length != totalNumOfCards) {

throw new Exception ("Illegal number of cards provided")
;

}
uRepresentation = new BigInteger [totalNumOfCards + 1] ;
uRepresentation [0] = null ;
for (int i = 1 ; i <= totalNumOfCards ; i++) {

uRepresentation [i] = new BigInteger (vectorItems [i−1]) ;
}

}

/*
* Returns the product of card x Matrix
* http://mathworld.wolfram.com/MatrixMultiplication.html
*/

41

CardVectorRepresentation (CardVectorRepresentation card ,
CardPermutationMatrix matrix , int totalNumOfCards) {
BigInteger [] [] permMatrix = matrix . getPermutationMatrix () ;
uRepresentation = new BigInteger [totalNumOfCards + 1] ;
uRepresentation [0] = null ;
for (int calculatedIndex = 1 ; calculatedIndex <=

totalNumOfCards ; calculatedIndex++) {
BigInteger columnSum = BigInteger . ZERO ;
for (int i=1; i <= totalNumOfCards ; i++) {

columnSum = columnSum . add (permMatrix [
calculatedIndex] [i]) ;

}
uRepresentation [calculatedIndex] = columnSum . multiply (

card . getVectorPosition (calculatedIndex)) ;
}

}

int getCardValue (BigInteger zPrime) {
for (int i=1; i <= totalNumOfCards ; i++) {

BigInteger moduloZi = uRepresentation [i] . mod (zPrime) ;
if (moduloZi . compareTo (BigInteger . ZERO) == 1) {

return i ;
}

}
return −1;

}

public String toString () {
String output = "" ;
for (int i = 1 ; i <= totalNumOfCards ; i++) {

output += uRepresentation [i] . toString () ;
if (i != totalNumOfCards) {

output += " " ;
}

}
return output ;

}
}

6.4.4 implementation code/java code/DNChain.java

import java . util . ArrayList ;

public class DNChain {
public ArrayList<DataChainLink> linkArray ;

42

final static int ChainLength = 100 ;

DNChain () {
linkArray = new ArrayList<DataChainLink>(ChainLength) ;

}

public void add (DataChainLink addDataChainLink) {
linkArray . add (addDataChainLink) ;
//System.out.println("ChainSize:" + linkArray.size());

}

public void addArray (DataChainLink [] addDataChainLinkArray) {
for (int i=0; i < addDataChainLinkArray . length ; i ++) {

add (addDataChainLinkArray [i]) ;
}

}

public DataChainLink getLastLcaseBigoCard () {
for (int i = (linkArray . size () − 1) ; i >= 0 ; i−−) {

DataChainLink currentCard = linkArray . get (i) ;
if (currentCard . isLcaseBigOZero ()) { //w_0

return currentCard ;
}

}
return null ; //nothing found

}

public int getSize () {
return linkArray . size () ;

}

public String dumpChain () {
String result = "" ;
for (int i=0; i < linkArray . size () ; i++) {

DataChainLink currentLink = (DataChainLink) linkArray .
get (i) ;

result += "i: " + currentLink . forOutput () + "\n" ;
}
return result ;

}

public int lastPlayerRequestedCard () {
// TODO Auto-generated method stub
return 0 ;

}

43

public DataChainLink getLastLinkOfPlayer (int playerLink) {
for (int i = linkArray . size () − 1 ; i >= 0 ; i−−) {

DataChainLink currentLink = (DataChainLink) linkArray .
get (i) ;

if (currentLink . PlayerPosition == playerLink) {
return currentLink ;

}
}
return null ;

}

public boolean reveivedWZero () {
DataChainLink lastLink = (DataChainLink) linkArray . get (

linkArray . size () − 1) ;
return (lastLink . isWZero ()) ;

}

public boolean receivedW_j_primePrevious (int position) {
int playerToCheckChain = position − 1 ;
if (playerToCheckChain < 1) {

return false ;
}
DataChainLink lastLink = (DataChainLink) linkArray . get (

linkArray . size () − 1) ;
if (lastLink . PlayerPosition == playerToCheckChain

&& lastLink . isWjprimeofPreviousPlayer (position)) {
return true ;

}
return false ;

}

public boolean receivedW_j (int position) {
int playerToCheckChain = position − 1 ;
if (playerToCheckChain < 1) {

return false ;
}
DataChainLink lastLink = (DataChainLink) linkArray . get (

linkArray . size () − 1) ;
if (lastLink . PlayerPosition == playerToCheckChain

&& lastLink . isWjofPreviousPlayer (position)) {
return true ;

}
return false ;

}

// public static void main(String args[]) {
// DNChain dChain = new DNChain();

44

//
// dChain.add(new DataChainLink(BigInteger.TEN, 999));
//
// BigInteger sillyPrime = new BigInteger("7"); //this should

originate from player's key generation
// Deck initialPlayerDeck = new Deck();
// CardPermutationMatrix initialPermMatrix = new

CardPermutationMatrix(initialPlayerDeck , sillyPrime);
// String commitment_P_i = initialPermMatrix.getCommitment();
// int possition_P_i = 1;
// String previousSignature = null;
// System.out.println(commitment_P_i);
//
// dChain.add(new DataChainLink(commitment_P_i ,

previousSignature , possition_P_i));
// }
}

6.4.5 implementation code/java code/DataChainLink.java

import java . math . BigInteger ;
import java . security . NoSuchAlgorithmException ;

public class DataChainLink {

public String ChainingValue ; // X_k
public String TimeStamp ; // T_k
public String Concept ; // C_k
public String Attributes ; // V_k
public int PlayerPosition ; //player's position in game

private static String Seperator = " . " ;
private static String Concept_Prime = "PZ_i" ;
private static String Concept_Commitment = "CP_i" ;
private static String Concept_UcaseDeltaSet = "BD_i" ;
private static String Concept_UcaseEpsilonSet = "UE_i" ;
private static String Concept_EncryptedDeck = "ED_i" ;
private static String Concept_ChainContract = "CC_i" ;
private static String Concept_DummyLink = "DM_i" ;
private static String Concept_w0_Card_Draw = "W0_i" ;
private static String Concept_wi_Card_Draw = "Wi_i" ;
private static String Concept_wiPrime_Card_Draw = "Pi_i" ;

private static int ChainElementsSize = 5 ;

45

private static String EmptyChainingValue = "nochainval" ;
private static String ConcatenationSeperator = "-" ;

/* Constructors */

DataChainLink () { //returns "dummy" link with no significant
properties
this . PlayerPosition = −1;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = Concept_DummyLink ;
this . Attributes = new String (EmptyChainingValue) ;
this . ChainingValue = new String (EmptyChainingValue) ; //

signature of previous chainLink
}

DataChainLink (EncryptedCard lcaseBigOPrime , String
prevSignature , int playerPos) {
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = Concept_wiPrime_Card_Draw ;
this . Attributes = lcaseBigOPrime . forOutput () ;
this . ChainingValue = prevSignature ; //signature of

previous chainLink
}

DataChainLink (EncryptedVectorDeck encDeck , String
prevSignature , int playerPos) {
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = Concept_EncryptedDeck ;
this . Attributes = encDeck . encOutput () ;
this . ChainingValue = prevSignature ; //signature of

previous chainLink
}

DataChainLink (DeltaEpsilonSet deSet , boolean isDelta , String
prevSignature , int playerPos) {
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = (isDelta) ? new String (

Concept_UcaseDeltaSet) : new String (
Concept_UcaseEpsilonSet) ;

this . Attributes = deSet . output () ;
this . ChainingValue = prevSignature ; //signature of previous

chainLink
}

46

DataChainLink (BigInteger Z_i , int playerPos) { //For initial
chain link, builds it based on prime Z of player i
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = new String (Concept_Prime) ;
this . Attributes = Z_i . toString () ;
this . ChainingValue = EmptyChainingValue ; //first link has

no chaining value
}

DataChainLink (String playerCommitment , String prevSignature ,
int playerPos) {
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = new String (Concept_Commitment) ;
this . Attributes = playerCommitment ;
this . ChainingValue = prevSignature ; //signature of previous

chainLink
}

DataChainLink (DataChainLink [] contractionLinks , MPElGamal
cryptoSystem , int playerPos) { //note: no signature
this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
this . Concept = new String (Concept_ChainContract) ;
this . Attributes = "" ;
for (int i = 1 ; i < contractionLinks . length ; i++) {

this . Attributes += contractionLinks [i] . Attributes ;
if (i != (contractionLinks . length − 1)) {

this . Attributes += ConcatenationSeperator ;
}

}

// compute hash
byte [] attributesHash = null ;
try {

attributesHash = Signature . getSHA1Byte (this . Attributes)
;

} catch (NoSuchAlgorithmException algExp) {
System . err . println ("Sha1 not supported") ;
System . exit (−2) ;

}
MPSignedInteger signedHash = cryptoSystem . sign (

attributesHash) ;
String signedHashStr = signedHash . strOutput () ;
; // sign hash

47

this . ChainingValue = signedHashStr ;
}

//DataChain Link from u0/uj integer:
DataChainLink (CardVectorRepresentation cardVect , boolean

w0Flag ,
String prevSignature , int playerPos) {

this . PlayerPosition = playerPos ;
this . TimeStamp = MPGame . getDateTime () ;
if (w0Flag == true) {

this . Concept = new String (Concept_w0_Card_Draw) ;
} else {

this . Concept = new String (Concept_wi_Card_Draw) ;
}
this . Attributes = cardVect . toString () ;
this . ChainingValue = prevSignature ; //signature of previous

chainLink
}

public static DataChainLink fromString (String strInput) {
System . out . println ("input: " + strInput) ;
DataChainLink dnc = new DataChainLink () ;
String dncElements [] = strInput . split (Seperator) ;
if (dncElements . length != ChainElementsSize) { //error

System . out . println ("Illegal number of elements submited
in chain link ("

+ dncElements . length + ").") ;
System . out . println ("Firs element: " + dncElements [0]) ;

return null ;
}
try {

dnc . PlayerPosition = Integer . parseInt (dncElements [0]) ;
dnc . TimeStamp = dncElements [1] ;
dnc . Concept = dncElements [2] ;
dnc . Attributes = dncElements [3] ;
dnc . ChainingValue = dncElements [4] ;

} catch (Exception exp) {
System . out . println ("Exception in parsing.") ;
return null ;

}
return dnc ;

}

/**
* For communication among Players

48

* @return comma separated output of DataChainLink for
transmission

*/
public String forOutput () {

String output = PlayerPosition + Seperator
+ TimeStamp + Seperator
+ Concept + Seperator
+ Attributes + Seperator
+ ChainingValue ;

return output ;
}

public String getSeperator () {
return Seperator ;

}

public boolean isDummy () {
return (this . Concept == Concept_DummyLink) ;

}

public boolean isLcaseBigOZero () {
return (this . Concept == Concept_w0_Card_Draw) ;

}

public boolean isLcaseBigOZeroPrime () {
return (this . Concept == Concept_wiPrime_Card_Draw) ;

}

public boolean isWjofPreviousPlayer (int position) {
return (this . Concept == Concept_wi_Card_Draw) && (this .

PlayerPosition == (position −1)) ;
}

public boolean isWjprimeofPreviousPlayer (int position) {
return (this . Concept == Concept_wiPrime_Card_Draw) && (this

. PlayerPosition == (position −1)) ;
}

public boolean isWZero () {
return (this . Concept == Concept_w0_Card_Draw) ;

}

public CardVectorRepresentation getCardVectorRepresentation () {
if (this . Concept != this . Concept_wi_Card_Draw) {

return null ;
}
// TODO Auto-generated method stub

49

return null ;
}

}

6.4.6 implementation code/java code/Deck.java

public class Deck {
final public static int numberOfCards = 5 ;

private int [] initialPermutation ;
/**
* Generates a permutation of the card deck
*/

Deck () {
initialPermutation = new int [numberOfCards + 1] ;
for (int i = 1 ; i <= numberOfCards ; i++) { // create

initialPermutation [i] = i ;
}
this . shuffle () ;

}

public Deck shuffle (Deck inputDeck) {
Deck newDeck = new Deck () ;
for (int i = 0 ; i < numberOfCards ; i++) { // copy

newDeck . initialPermutation [i] = inputDeck .
initialPermutation [i] ;

}
newDeck . shuffle () ;
return newDeck ;

}

public int getCardAtPosition (int i) {
if ((i<=numberOfCards) && (i>0)) {

return initialPermutation [i] ;
} else {

return −1;
}

}

/* Code from this originated from: http://www.cs.princeton.edu/
introcs/21function/Shuffle.java.html

* Version here has been extensively rewritten and does not
look like the referenced one.

*/

50

protected void shuffle () {
for (int i = 1 ; i <= numberOfCards ; i++) {

int r = i + (int) (Math . random () ∗ (numberOfCards−i)) ;
// between i and N-1

exch (i , r) ;
}
//Debug Code:
//for (int i=0; i < numberOfCards; i++) { System.out.

println(i + "card: " + initialPermutation[i]); }
}

// swaps array elements i and j
protected void exch (int i , int j) {

int swap = initialPermutation [i] ;
initialPermutation [i] = initialPermutation [j] ;
initialPermutation [j] = swap ;

}
}

6.4.7 implementation code/java code/DeltaEpsilonSet.java

import java . math . BigInteger ;

class DeltaEpsilonSet {
final static String Seperator = ", " ;
final static String InternalSeperator = "-" ;

MPEncryptedMessage [] BigDelta ;

DeltaEpsilonSet (LcaseDeltaSet lDelta , MPElGamal cryptoSystem) {
BigDelta = new MPEncryptedMessage [LcaseDeltaSet . SizeS] ;
BigInteger msgToEncrypt ;
for (int i=0; i < LcaseDeltaSet . SizeS ; i++) {

//System.out.println("position: " + i);
msgToEncrypt = lDelta . getItem (i) ;
//System.out.println(" got item: " + msgToEncrypt);
BigDelta [i] = cryptoSystem . encrypt (msgToEncrypt) ;

}
}

public String output () {
String result = "" ;
for (int i=0; i < LcaseDeltaSet . SizeS ; i++) {

result += BigDelta [i] . strOutput () ;
if (i != (LcaseDeltaSet . SizeS − 1)) {

51

result += Seperator ;
}

}
return result ;

}

public int getSize () {
return BigDelta . length ;

}

public MPEncryptedMessage getItem (int position) {
if ((position < 0) | | (position >= BigDelta . length)) {

return null ;
}
return BigDelta [position] ;

}

}

6.4.8 implementation code/java code/EcnryptedDeck.java

class EcnryptedDeck {
public EncryptedCard [] encCards ;

EcnryptedDeck () {
encCards = new EncryptedCard [Deck . numberOfCards] ;

}

public String forOutput () {
String result = "" ;
for (int i=0; i < Deck . numberOfCards ; i++) {

result += encCards [i] . forOutput () ;
if (i != (Deck . numberOfCards − 1)) {

result += EncryptedCard . Seperator ; //using the same
,

//since the other part knows it's length and can
therefore decode

}
}
return result ;

}
}

52

6.4.9 implementation code/java code/ElGamal.java

// http://faculty.washington.edu/moishe/javademos/Security/ElGamal.
java

import java . math . ∗ ;
import java . util . ∗ ;
import java . security . ∗ ;
import java . io . ∗ ;

public class ElGamal
{

public static void main (String [] args) throws IOException
{

BigInteger p , b , c , secretKey ;
Random sc = new SecureRandom () ;
secretKey = new BigInteger ("12345678901234567890") ;
//
// public key calculation
//
System . out . println ("secretKey = " + secretKey) ;
p = BigInteger . probablePrime (64 , sc) ;
b = new BigInteger ("3") ;
c = b . modPow (secretKey , p) ;
System . out . println ("p = " + p) ;
System . out . println ("b = " + b) ;
System . out . println ("c = " + c) ;
//
// Encryption
//
System . out . print ("Enter your Big Number message -->") ;
String s = Tools . GetString () ;
BigInteger X = new BigInteger (s) ;
BigInteger r = new BigInteger (64 , sc) ;
BigInteger EC = X . multiply (c . modPow (r , p)) . mod (p) ;
BigInteger brmodp = b . modPow (r , p) ;
System . out . println ("Plaintext = " + X) ;
System . out . println ("r = " + r) ;
System . out . println ("EC = " + EC) ;
System . out . println ("b^r mod p = " + brmodp) ;
//
// Decryption
//
BigInteger crmodp = brmodp . modPow (secretKey , p) ;
BigInteger d = crmodp . modInverse (p) ;

53

BigInteger ad = d . multiply (EC) . mod (p) ;
System . out . println ("\n\nc^r mod p = " + crmodp) ;
System . out . println ("d = " + d) ;
System . out . println ("Alice decodes: " + ad) ;

}
}

6.4.10 implementation code/java code/EncryptedCard.java

import java . math . BigInteger ;

class EncryptedCard {
public final static String Seperator = ", " ;
MPEncryptedMessage [] encryptedVector ;

public EncryptedCard (CardVectorRepresentation inputCard ,
MPElGamal cryptoSystem) {
encryptedVector = new MPEncryptedMessage [Deck . numberOfCards

+ 1] ;
encryptedVector [0] = null ;
for (int i=1; i <= Deck . numberOfCards ; i++) {

BigInteger currentBI = inputCard . getVectorPosition (i) ;
encryptedVector [i] = cryptoSystem . encrypt (currentBI) ;

}
}

public EncryptedCard (EncryptedCard muptiplyCard ,
EncryptedPermutationMatrix encMatrix) {
MPEncryptedMessage [] cardVector = muptiplyCard .

getVectorArray () ;
int totalNumOfCards = cardVector . length ;
MPEncryptedMessage [] [] encMatrixArray =encMatrix .

getMatrixArray () ;
encryptedVector = new MPEncryptedMessage [totalNumOfCards +

1] ;
encryptedVector [0] = null ;

for (int calculatedIndex = 1 ; calculatedIndex <=
totalNumOfCards ; calculatedIndex++) {
MPEncryptedMessage columnSum = new MPEncryptedMessage (

BigInteger . ZERO , BigInteger . ZERO) ;
for (int i=1; i <= totalNumOfCards ; i++) {

BigInteger a = encMatrixArray [calculatedIndex] [i] .
encA ;

54

BigInteger b = encMatrixArray [calculatedIndex] [i] .
encB ;

columnSum . add (a , b) ;
}
encryptedVector [calculatedIndex] = new

MPEncryptedMessage (cardVector [calculatedIndex] . encA ,
cardVector [calculatedIndex] . encB) ;

encryptedVector [calculatedIndex] . multiply (columnSum) ;
}

}

public MPEncryptedMessage [] getVectorArray () {
return this . encryptedVector ;

}

public String forOutput () {
String result = "" ;
for (int i=1; i <= Deck . numberOfCards ; i++) {

result += encryptedVector [i] . strOutput () ;
if (i != (Deck . numberOfCards − 1)) {

result += Seperator ;
}

}
return result ;

}
}

6.4.11 implementation code/java code/EncryptedPermutationMatrix.java

import java . math . BigInteger ;
import java . security . NoSuchAlgorithmException ;
import java . security . SecureRandom ;

public class EncryptedPermutationMatrix {
protected MPEncryptedMessage [] [] encPermMatrix ;
SecureRandom sec ;

EncryptedPermutationMatrix (
CardPermutationMatrix permMatrix ,
DeltaEpsilonSet deltaSet ,
DeltaEpsilonSet epsilonSet ,
MPElGamal crypto ,
SecureRandom sec ,
BigInteger primeZ ,
BigInteger otherPrimeZ ,

55

int numberOfCards) {
if (sec == null) {

sec = new SecureRandom () ;
}
encPermMatrix = new MPEncryptedMessage [numberOfCards] [

numberOfCards] ;
BigInteger [] [] biPermMatrix = permMatrix .

getPermutationMatrix () ;
this . sec = sec ;
int s = deltaSet . getSize () ;
for (int kLoop = 1 ; kLoop <= numberOfCards ; kLoop++) {

for (int lLoop = 1 ; lLoop <= numberOfCards ; lLoop++) {
mainEcnLoop (kLoop , lLoop , biPermMatrix , deltaSet ,

epsilonSet , sec , primeZ , otherPrimeZ , s) ;
}

}
}

public MPEncryptedMessage [] [] getMatrixArray () {
return this . encPermMatrix ;

}

private void mainEcnLoop (int kLoop , int lLoop , BigInteger [] []
biPermMatrix ,

DeltaEpsilonSet deltaSet ,
DeltaEpsilonSet epsilonSet ,
SecureRandom sec ,
BigInteger primeZ , BigInteger otherPrimeZ , int s) {

//generate pseudorandom value g
int g = generatePseudoG (sec , s) ;
//get g random numbers from 1 to s
int deltaSetRandomPositions [] = new int [g] ;
for (int i=0; i < g ; i++) {

boolean existsInArray = false ;
do {

existsInArray = false ;
int nextInt = sec . nextInt (s) ;
for (int j=0; j < i ; j++) {

if (nextInt == deltaSetRandomPositions [j]) {
existsInArray = true ;

}
}
deltaSetRandomPositions [i] = nextInt ;

} while (! existsInArray) ;
}

56

MPEncryptedMessage h = new MPEncryptedMessage (BigInteger .
ZERO , BigInteger . ZERO) ;

for (int i=0; i < g ; i++) {
MPEncryptedMessage summationElement = deltaSet . getItem (

deltaSetRandomPositions [i]) ;
h . add (summationElement) ;

}
BigInteger c = get_c (primeZ) ;
MPEncryptedMessage hPrime = new MPEncryptedMessage (h . encA ,

h . encB) ;
hPrime . mutiply (c) ;

//steps 4 and 5:
if (biPermMatrix [kLoop] [lLoop] . mod (otherPrimeZ) . equals (

BigInteger . ZERO)) { //step 4
encPermMatrix [kLoop] [lLoop] = hPrime ;

} else { //step 5
int gPrime = this . generatePseudoG (sec , s) ;
MPEncryptedMessage gThElementofEpsilon = epsilonSet .

getItem (gPrime) ;
MPEncryptedMessage hPrimePlusGth = new

MPEncryptedMessage (hPrime . encA , hPrime . encB) ;
hPrimePlusGth . add (gThElementofEpsilon) ;
encPermMatrix [kLoop] [lLoop] = hPrimePlusGth ;

}
}

private int generatePseudoG (SecureRandom sec , int s) {
int g = sec . nextInt () ;
if (g > s) { //trim it

g = g % s ;
}
if (g == 0) {

g = 1 ;
}
return g ;

}

private BigInteger get_c (BigInteger z) {
//return random c: c mod z != 0
int nextInt = sec . nextInt (100) ; //suppose between one and

100
if (nextInt == 0) {

nextInt = 1 ;
}

57

BigInteger nextBI = BigInteger . valueOf ((long) nextInt) ;
return nextBI . multiply (z) ;

}

}

6.4.12 implementation code/java code/EncryptedVectorDeck.java

import java . math . BigInteger ;
/*
* Represents a deck of cards under the Card Vector Representation
*/

class EncryptedVectorDeck {
private EncryptedCard [] encCard ;

public EcnryptedDeck encryptedVDeck ;

final static String Seperator = ", " ;

public EncryptedVectorDeck (VectorDeck inputVDeck , BigInteger zI
, MPElGamal myCrypto) {

encCard = new EncryptedCard [Deck . numberOfCards + 1] ;
encCard [0] = null ;
for (int i=1; i <= Deck . numberOfCards ; i++) {

encCard [i] = new EncryptedCard (inputVDeck .
getCardAtPosition (i) , myCrypto) ;

}

// vDeck = new Card[Deck.numberOfCards];
// for (int i=0; i < Deck.numberOfCards; i++) {
// vDeck[i] = new Card(inputDeck.getCardAtPosition(i), zI,

Deck.numberOfCards);
// }
// encryptedVDeck = null;

}

// public void encrypt(MPElGamal cryptoSystem) {
// if (encryptedVDeck == null) {
// encryptedVDeck = new EcnryptedDeck();
// for (int i=0; i < Deck.numberOfCards; i++) {
// encryptedVDeck.encCards[i] = new EncryptedCard(

vDeck[i], cryptoSystem);
// }
// }

58

// }

public String encOutput () {
String result = "" ;
for (int i =1; i <= Deck . numberOfCards ; i++) {

result += encCard [i] . forOutput () ;
if (i != Deck . numberOfCards) {

result += Seperator ;
}

}
return result ;

}

public void shuffle () {
for (int i = 1 ; i <= Deck . numberOfCards ; i++) {

int r = i + (int) (Math . random () ∗ (Deck . numberOfCards−
i)) ; // between i and N-1

exch (i , r) ;
}

// //Debug Code
// for (int i=0; i < Deck.numberOfCards; i++) {
// System.out.println(i + "card: " + encryptedVDeck.

encCards[i].forOutput());
// }

}

// swaps array elements i and j
protected void exch (int i , int j) {

EncryptedCard swap = this . encCard [i] ;
this . encCard [i] = this . encCard [j] ;
this . encCard [j] = swap ;

}

public EncryptedCard getCardAtPosition (int position) {
if ((position < 1) | | (position > Deck . numberOfCards)) {

return null ;
}
return encCard [position] ;

}

}

6.4.13 implementation code/java code/InitializationState.java

59

public enum InitializationState {
START ,
ZIBROADCAST ,
PERMUTATIONMATRIXBCAST ,
UCASEDELTASETBCAST ,
BIGEPSILONSETBCAST ,
VECTORDECKBCAST ,
PLAYERCROUPIERBCAST ,
END

}

6.4.14 implementation code/java code/LcaseDeltaSet.java

import java . math . BigInteger ;
import java . security . NoSuchAlgorithmException ;
import java . security . SecureRandom ;

/**
* Used for h part of initialization algorithm computes a set of

small deltas
* @author dimitris
*
*/

class LcaseDeltaSet {
final static int SizeS = Deck . numberOfCards + 2 ; //s such as s

> t (t==numberOfCards)
final static int RandomNumberOfBits = 5 ;

protected BigInteger [] numCollection ;

/**
*
* @param primeZi prime number Z chosen by current player
*/

LcaseDeltaSet (BigInteger primeZ) {
numCollection = new BigInteger [SizeS] ;
SecureRandom secRnd = new SecureRandom () ;
for (int i=0; i < SizeS ; i++) {

BigInteger randomBI = new BigInteger (RandomNumberOfBits
, secRnd) ;

randomBI = randomBI . abs () ;
numCollection [i] = randomBI . multiply (primeZ) ;

}
}

60

BigInteger getItem (int position) {
if ((position < 0) | | (position >= SizeS)) {

return null ;
}
return numCollection [position] ;

}

}

6.4.15 implementation code/java code/LcaseEpsilonSet.java

import java . math . BigInteger ;
import java . security . SecureRandom ;

class LcaseEpsilonSet extends LcaseDeltaSet {

LcaseEpsilonSet (BigInteger primeZ) {
super (primeZ) ;
SecureRandom secRnd = new SecureRandom () ;
for (int j=0; j < SizeS ; j++) {

BigInteger randomBI = new BigInteger (RandomNumberOfBits
, secRnd) ;

randomBI = randomBI . abs () ;
randomBI = randomBI . mod (primeZ) ;
numCollection [j] = numCollection [j] . add (randomBI) ;

}
}

}

6.4.16 implementation code/java code/MPElGamal.java

import java . math . BigInteger ;
import java . security . ∗ ;
import java . security . interfaces . ∗ ;

/*
* Custom implementation of ElGamal
* Ideas, but not copy-paste from:
* http://faculty.washington.edu/moishe/javademos/Security/ElGamal.

java
*

61

* Proof of homomorphic property of ElGamal's encryption
* http://www.cs.ucla.edu/~rafail/TEACHING/WINTER -2005/L8/L8.ps
* TODO: check this as well: http://developer.berlios.de/projects/

elgamal/
*/

public class MPElGamal {
private final int RandomBitLength = 50 ; //randomly chosen
private final int CryptographyError = −3;

private MPKeyPrivate privateKey ;
private MPKeyPublic publicKey ;
private BigInteger zPlayer = null ;

public static int Apos = 0 ;
public static int Bpos = 1 ;
public static int EncryptionArraySize = 2 ;
public static final String Seperator = "-" ;

//missing:
//signature verification

public MPKeyPublic getPublicKey () {
return publicKey ;

}

public MPKeyPrivate getPrivateKey () {
return privateKey ;

}

public BigInteger getZPlayer () {
if (zPlayer == null) {

return generateZ () ;
} else {

return zPlayer ;
}

}

private BigInteger generateZ () {
zPlayer = BigInteger . ZERO ;
int zLegth = publicKey . p . bitLength () ;
SecureRandom sec = new SecureRandom () ;
do {

zPlayer = new BigInteger (zLegth , sec) ;
} while ((zPlayer . compareTo (publicKey . p) >= 0) | | (zPlayer .

compareTo (BigInteger . ZERO) <= 0)) ;
return zPlayer ;

}

62

MPElGamal () {
//initialization
SecureRandom sec = new SecureRandom () ;
publicKey = new MPKeyPublic () ;
privateKey = new MPKeyPrivate () ;
//assignments
publicKey . p = new BigInteger (RandomBitLength , sec) ;
publicKey . g = new BigInteger (RandomBitLength − 2 , sec) ;
privateKey . x = new BigInteger (RandomBitLength − 2 , sec) ;
publicKey . y = publicKey . g . modPow (privateKey . x , publicKey . p

) ;
}

public MPEncryptedMessage encrypt (BigInteger message) {
BigInteger pMinusOne = (publicKey . p) . add (BigInteger . ONE .

negate ()) ;
BigInteger randomK ;
randomK = randomRelativelyPrime (pMinusOne) ;
BigInteger resultA ;
BigInteger resultB ;

resultA = (publicKey . g) . modPow (randomK , publicKey . p) ;
/*
* b = ((y^k)*M) % p =
* = (((y^k) % p) * (M % p)) % p
* ^^^^^= ypowk ^^^^=mpowk
*/

BigInteger ypowk = (publicKey . y) . modPow (randomK , publicKey .
p) ;

BigInteger mpowk = message . mod (publicKey . p) ;
resultB = (ypowk . multiply (mpowk)) . mod (publicKey . p) ;
MPEncryptedMessage mpEncRes = new MPEncryptedMessage (

resultA , resultB) ;
return mpEncRes ;

}

public BigInteger decrypt (MPEncryptedMessage mpEnc) {
//message = (b /a ^ x) mod p =
// = (bmodp) / ((a^x mod p)) mod p

BigInteger aPowX = (mpEnc . encA) . modPow (privateKey . x ,
publicKey . p) ;

BigInteger aPowXInv = aPowX . modInverse (publicKey . p) ;
BigInteger bModp = (mpEnc . encB) . mod (publicKey . p) ;
BigInteger division = bModp . multiply (aPowXInv) ;

63

BigInteger message = division . mod (publicKey . p) ;
return message ;

}

public String signString (String message) {
//getSHA1Byte
byte [] hashedMessageByte = null ;
try {

hashedMessageByte = Sha1Signature . getSHA1Byte (message) ;
} catch (NoSuchAlgorithmException e) {

e . printStackTrace () ;
System . err . println ("No Sha1 supported , exiting") ;
System . exit (CryptographyError) ;

}
MPSignedInteger signedMessage = sign (hashedMessageByte) ;
return signedMessage . strOutput () ;

}

public MPSignedInteger sign (byte [] hashedMessageByte) {

BigInteger hashedMessageBI = new BigInteger (
hashedMessageByte) ;

BigInteger pMinusOne = (publicKey . p) ;
pMinusOne = pMinusOne . subtract (BigInteger . ONE) ;

if (hashedMessageBI . compareTo (pMinusOne) == 1) {
System . err . print ("messageBI: " + hashedMessageBI

+ " is bigger than pMinusOne , " + pMinusOne + "
, proceeding with mod (") ;

hashedMessageBI = hashedMessageBI . mod (pMinusOne) ;
System . err . println (hashedMessageBI + ")") ;

}

BigInteger randomK = randomRelativelyPrime (pMinusOne) ;
BigInteger kPowMinOne = randomK . modInverse (pMinusOne) ;

BigInteger a = (publicKey . g) . modPow (randomK , (publicKey . p))
;

//steps for calculating b:
BigInteger amulr = a . multiply (randomK) ;
BigInteger hashMinusAmulR = hashedMessageBI . min (amulr) ;
BigInteger b = kPowMinOne . multiply (hashMinusAmulR) . mod (

pMinusOne) ;

64

MPSignedInteger signedMessage = new MPSignedInteger (a , b) ;
return signedMessage ;

}

private BigInteger randomRelativelyPrime (BigInteger coPrime) {
//coPrime is modulo as well
SecureRandom sec = new SecureRandom () ;
BigInteger gcdRandomCoPrime = null ;
BigInteger randomK = null ;
do {

randomK = new BigInteger (RandomBitLength , sec) ;
randomK = randomK . abs () ;
randomK = randomK . mod (coPrime) ;
gcdRandomCoPrime = randomK . gcd (coPrime) ;
//System.out.println("random: " + randomK + ",

comparison result: " + gcdRandomCoPrime.compareTo(
BigInteger.ONE));

} while (gcdRandomCoPrime . compareTo (BigInteger . ONE) != 0) ;
return randomK ;

}

/**
* Generates an Elgamal private and public key and displays it
* @param args
*/

public static void main (String args []) {
MPElGamal mpCrypto = new MPElGamal () ;
System . out . println ("zPlayer: " + mpCrypto . getZPlayer ()) ;
// try to encrypt and decrypt a big integer:
BigInteger original = new BigInteger ("42") ;
BigInteger compare = BigInteger . ZERO ;

MPEncryptedMessage mpEnc = mpCrypto . encrypt (original) ;
compare = mpCrypto . decrypt (mpEnc) ;
//encrypt
//decrypt
if (original . equals (compare)) {

System . out . println ("El Gamal test provided correct
results") ;

} else {
System . err . println ("El Gamal test did not provide

correct results") ;
System . err . println ("original: " + original) ;
System . err . println ("compare : " + compare) ;

}

65

}
}

/*
* Data Structures for keys
*/

class MPKeyPrivate {
public BigInteger x ; //El Gamal's x, random number less than p

}

class MPKeyPublic {
public BigInteger p ; //El Gamal's p, prime number
public BigInteger g ; //El Gamal's g, random number less than p
public BigInteger y ; //El Gamal's y, y = (g^x)mod(p)

}

class MPSignedInteger extends MPEncryptedMessage {
MPSignedInteger (BigInteger a , BigInteger b) {

super (a , b) ;
}

}

6.4.17 implementation code/java code/MPEncryptedMessage.java

import java . math . BigInteger ;

class MPEncryptedMessage {
public BigInteger encA ; //ElGamal's A
public BigInteger encB ; //ElGamal's B

MPEncryptedMessage (BigInteger a , BigInteger b) {
encA = a ;
encB = b ;

}

public String strOutput () {
return encA + MPElGamal . Seperator + encB ;

}

public void add (MPEncryptedMessage summationElement) {
encA = encA . add (summationElement . encA) ;
encB = encB . add (summationElement . encB) ;

}

66

public void mutiply (BigInteger c) {
encA = encA . multiply (c) ;
encB = encB . multiply (c) ;

}

public void add (BigInteger a , BigInteger b) {
encA = encA . add (a) ;
encB = encB . add (b) ;

}

public void multiply (MPEncryptedMessage mpEncryptedMessage) {
encA = encA . multiply (mpEncryptedMessage . encA) ;
encB = encB . multiply (mpEncryptedMessage . encB) ;

}
}

6.4.18 implementation code/java code/MPGame.java

import java . text . DateFormat ;
import java . text . SimpleDateFormat ;
import java . util . Date ;

public class MPGame {

final static int numberOfPlayers = 5 ;

/**
* @param args
*/

public static void main (String [] args) {
Player [] player = new Player [numberOfPlayers + 1] ; //

emulate array from 1 to numberOfPlayers
player [0] = null ; //we start from 1
for (int i=1; i <= numberOfPlayers ; i++) {

player [i] = new Player (i) ;
}

boolean endOfGameFlag = false ;
do {

//This is a no-thread imitation of broadcast
communication ,

//which has to do with algorithm and JIF-specific
issues

int nullLinkCount = 0 ;

67

for (int i=1; i <= numberOfPlayers ; i++) {
DataChainLink broadcastedDNCLink = player [i] .

getNextDNCLink () ;
if (broadcastedDNCLink != null) {

for (int j=1; j <= numberOfPlayers ; j++) {
player [j] . receiveNextDNCLink (

broadcastedDNCLink) ;
}

} else {
nullLinkCount++;
if (nullLinkCount == numberOfPlayers) { //

nothing new from ALL players
endOfGameFlag = true ;

}
}

}

} while (! endOfGameFlag) ;

//see status:
for (int i=1; i <= numberOfPlayers ; i++) {

System . out . println (player [i] . dump ()) ;
}

}

//Common utility functions:

public static String getDateTime () {
DateFormat dateFormat = new SimpleDateFormat ("

yyyyMMddHHmmss") ;
Date date = new Date () ;
return dateFormat . format (date) ;

}
}

6.4.19 implementation code/java code/Player.java

import java . math . BigInteger ;

public class Player {
private int position = −1;
private String name = null ;
private Deck mySecretDeck = null ;
private BigInteger primeNumberZ = null ;

68

private MPElGamal myCrypto = null ;
private CardPermutationMatrix myPermMatrix = null ;
private InitializationState initializationState =

InitializationState . START ;
private CardDrawState cardDrawState = CardDrawState . PLAYERIDLE ;
private String lastSignature = null ;
private DNChain myChain = null ;
private DNChain otherPlayersChain = null ;
private LcaseDeltaSet myLcaseDeltaStet = null ;
private LcaseEpsilonSet myLcaseEpsilonStet = null ;
private DeltaEpsilonSet myUcaseDeltaSet = null ;
private DeltaEpsilonSet myUcaseEpsilonSet = null ;
private VectorDeck myVectorDeck = null ;
private EncryptedVectorDeck myEncryptedVectorDeck = null ;
private String dncConcatenation ;

//Card Draw phase:
final static int NumberOfCardsToDraw = 3 ; //1st assumption on

running the algorithm
final static int CardDrawerPosition = 3 ; //2nd assumption on

running the algorithm
private int cardsDrawn = 0 ;
private boolean haveBroadcastesBigOZeroPrime = false ;
private boolean cardDrawBroadCastFlag = false ;

UZeroGenerator uZeroGen = null ;

public Player (int position) {
this . position = position ;
this . name = position + "-player" ;

System . out . println ("Initialization of" + this . name) ;
mySecretDeck = new Deck () ; //Generate Permutation
myChain = new DNChain () ;
otherPlayersChain = new DNChain () ;
//initialize Cryptographic System:
myCrypto = new MPElGamal () ;
primeNumberZ = myCrypto . getZPlayer () ;

//calculate small_delta (\delta) and small_epsilon (\
epsilon) sets

myLcaseDeltaStet = new LcaseDeltaSet (primeNumberZ) ; //(h)
Choose s values... low Delta Set

myLcaseEpsilonStet = new LcaseEpsilonSet (primeNumberZ) ; //(
i) Choose s values... low Epsilon Set

69

myUcaseDeltaSet = new DeltaEpsilonSet (myLcaseDeltaStet ,
myCrypto) ; //(j)Encrypting Small Delta

myUcaseEpsilonSet = new DeltaEpsilonSet (myLcaseEpsilonStet ,
myCrypto) ; //(j)Encrypting Small Epsilon

myVectorDeck = new VectorDeck (mySecretDeck , primeNumberZ) ;
//(m.a) of algorithm: Generate the vector

representation of cards of Deck

//calculate permutation matrix:
myPermMatrix = new CardPermutationMatrix (mySecretDeck ,

primeNumberZ) ;

myEncryptedVectorDeck = new EncryptedVectorDeck (
myVectorDeck , primeNumberZ , myCrypto) ;
//(m.b) encrypt

myEncryptedVectorDeck . shuffle () ; //(n) permute

uZeroGen = new UZeroGenerator (Deck . numberOfCards) ; //for
card draw phase

}

public String dump () { //shows a summary of player's status
String result = "Name: " + name + "\n" ;
result += "myZ: " + primeNumberZ .

toString () + "\n" ;
result += "my chain length: " + myChain .

getSize () + "\n" ;
result += "other players chain length: " +

otherPlayersChain . getSize () + "\n" ;
result += "permutation matrix commitment: " + myPermMatrix .

getCommitment () + "\n" ;

//result += "myChainDump:\n" + otherPlayersChain.dumpChain
() + "\n";

return result ;
}

public DataChainLink getNextDNCLink () {
DataChainLink nextLink ;
if (intializationPhase ()) { //player in initialization

phase.
switch (initializationState) {
case START :

System . out . println ("Start State") ;

70

initializationState = InitializationState .
ZIBROADCAST ; //next state

nextLink = new DataChainLink (primeNumberZ , position
) ; //generate Z_i DNC Link

break ;
case ZIBROADCAST :

System . out . println ("Broadcasted Z_i") ;
initializationState = InitializationState .

PERMUTATIONMATRIXBCAST ;
nextLink = new DataChainLink (myPermMatrix .

getCommitment () , lastSignature , position) ;
break ;

case PERMUTATIONMATRIXBCAST :
initializationState = InitializationState .

UCASEDELTASETBCAST ;
nextLink = new DataChainLink (myUcaseDeltaSet , true ,

lastSignature , position) ;
break ;

case UCASEDELTASETBCAST :
initializationState = InitializationState .

BIGEPSILONSETBCAST ;
nextLink = new DataChainLink (myUcaseEpsilonSet ,

false , lastSignature , position) ;
break ;

case BIGEPSILONSETBCAST :
initializationState = InitializationState .

VECTORDECKBCAST ;
//(o) Chain link of encrypted deck
nextLink = new DataChainLink (myEncryptedVectorDeck ,

lastSignature , position) ;
break ;

case VECTORDECKBCAST :
if (isCroupier ()) {

initializationState = InitializationState .
PLAYERCROUPIERBCAST ;

System . out . println ("I am the Croupier and
buinding a concatenation link. This sigmals
the initialization phase") ;

nextLink = getInitializationContractionLink () ;
} else {

initializationState = InitializationState . END ;
return null ;

}
break ;

case PLAYERCROUPIERBCAST :
initializationState = InitializationState . END ;
return null ;

71

case END :
default : //termination

return null ;
}

} else { //card draw
//System.out.println("Card Draw phase");
switch (cardDrawState) {
case PLAYERIDLE :

if (turnToDraw ()) {
cardDrawState = CardDrawState .

REQUESTCARDWAITWMINUSONE ;
nextLink = getWzeroDNC () ;
break ;

} else if ((position == 1) && this . received_w0 ()) {
//first player and received w0
nextLink = getWjLink () ;
cardDrawBroadCastFlag = true ;
break ;

} if (this . received_w_j () && position <
otherPlayersChain . lastPlayerRequestedCard ()) {
cardDrawState = CardDrawState .

PLAYERJRCVJMINUSONE ;
nextLink = new DataChainLink () ; //dummy
break ;

} if (this . received_w_j_prime () && position >
otherPlayersChain . lastPlayerRequestedCard ()) {
cardDrawState = CardDrawState .

PLAYERJRCVWJPRIMEMINUSONE ;
nextLink = new DataChainLink () ; //dummy
break ;

} else {
return null ; // nothing to do (store and stay

idle)
}

case PLAYER1RCVW0 :
nextLink = null ; //send nothing
cardDrawState = CardDrawState . PLAYERIDLE ; //return

to IDLE state
break ;

case PLAYERJRCVJMINUSONE :
nextLink = null ; //send nothing
cardDrawState = CardDrawState . PLAYERIDLE ; //return

to IDLE state
break ;

case PLAYERJRCVWJPRIMEMINUSONE :
nextLink = null ; //send nothing

72

cardDrawState = CardDrawState . PLAYERIDLE ; //return
to IDLE state

break ;
case REQUESTCARDWAITWMINUSONE :

//broadcast wprime_i
DataChainLink last_lcasebigoCardLink =

otherPlayersChain . getLastLcaseBigoCard () ;
CardVectorRepresentation last_lcasebigoCard =

last_lcasebigoCardLink .
getCardVectorRepresentation () ;

try {
last_lcasebigoCard = new

CardVectorRepresentation (
last_lcasebigoCardLink . Attributes , Deck .
numberOfCards) ;

} catch (Exception e) {
e . printStackTrace () ;
System . exit (−1) ;

}
CardVectorRepresentation w_jCard = new

CardVectorRepresentation (last_lcasebigoCard ,
myPermMatrix , Deck . numberOfCards) ; //

compute w_1

int valueOfCard = w_jCard . getCardValue (primeNumberZ
) ;

//modify m-th row
if (valueOfCard < 0) {

System . err . println ("error in card value") ;
System . exit (−1) ;

}
//modifynonzerorow
myPermMatrix . modifyRowNonModuloZ (valueOfCard ,

primeNumberZ , null) ; //4b of the algorithm

//encrypted card from shuffled deck
EncryptedCard lcaseBigOPrime =

myEncryptedVectorDeck . getCardAtPosition (
valueOfCard) ;

nextLink = new DataChainLink (lcaseBigOPrime ,
lastSignature , position) ;

cardDrawState = CardDrawState .
CARDREQUESTWAITWPRIMEN ;

//else same
break ;

case CARDREQUESTWAITWPRIMEN :

73

System . out . println ("Got last link of chain, now I
can calulate the card and return the value") ;

nextLink = new DataChainLink (new String ("Value
received") , lastSignature , position) ;

cardDrawState = CardDrawState . PLAYERIDLE ; //return
to IDLE state

default :
return null ;

}
}

myChain . add (nextLink) ;
lastSignature = myCrypto . signString (nextLink . forOutput ()) ;
return nextLink ;

}

private boolean intializationPhase () {
boolean endState = initializationState . equals (

InitializationState . END) ;
boolean croupierBCast = initializationState . equals (

InitializationState . PLAYERCROUPIERBCAST) ;
boolean initializationPhase = (! endState && ! croupierBCast

) ;
return initializationPhase ;

}

private DataChainLink getInitializationContractionLink () {
DataChainLink nextLink ;
DataChainLink [] lastPlayerLinks = new DataChainLink [MPGame .

numberOfPlayers + 1] ;
lastPlayerLinks [0] = null ;
for (int playerLink = 1 ; playerLink <= MPGame .

numberOfPlayers ; playerLink++) {
if (playerLink != position) {

lastPlayerLinks [playerLink] = otherPlayersChain .
getLastLinkOfPlayer (playerLink) ;

} else {
lastPlayerLinks [playerLink] = myChain .

getLastLinkOfPlayer (playerLink) ;
}

}
nextLink = new DataChainLink (lastPlayerLinks , myCrypto ,

position) ;
return nextLink ;

}

private DataChainLink getWjLink () {

74

DataChainLink nextLink ;
DataChainLink initial_lcasebigoCardLink = otherPlayersChain

. getLastLcaseBigoCard () ;
CardVectorRepresentation initial_lcasebigoCard = null ; //

get w_0 from chain link
try {

initial_lcasebigoCard = new CardVectorRepresentation (
initial_lcasebigoCardLink . Attributes , Deck .
numberOfCards) ;

} catch (Exception e) {
e . printStackTrace () ;
System . exit (−1) ;

}
CardVectorRepresentation nextCard = new

CardVectorRepresentation (initial_lcasebigoCard ,
myPermMatrix , Deck . numberOfCards) ; //compute w_1

nextLink = new DataChainLink (nextCard , false , lastSignature
, position) ;

return nextLink ;
}

private DataChainLink getWzeroDNC () {
DataChainLink nextLink ;
int next_u0 = uZeroGen . getNextUZero () ;
CardVectorRepresentation cardToSend = myVectorDeck .

getCardAtPosition (next_u0) ;
nextLink = new DataChainLink (cardToSend , true ,

lastSignature , position) ;
return nextLink ;

}

public void receiveNextDNCLink (DataChainLink inputDNC) {
if (initializationState != InitializationState . END) { //

player in initialization phase.
if (inputDNC != null) {

System . out . println ("(" + name + ")received: " +
inputDNC . forOutput ()) ; // DEBUG

if (inputDNC . PlayerPosition != position) {
otherPlayersChain . add (inputDNC) ;

}

if ((this . initializationState ==
InitializationState . VECTORDECKBCAST)

&& isCroupier ()) {
this . dncConcatenation += inputDNC . toString () ;

}
}

75

} else { //card draw
//GETS DNC LINK AND DECIDES WITCH THE NEXT STATE WILL

BE

if (cardDrawState == CardDrawState . PLAYERIDLE) { //
From Idle State:
if ((position == 1) && inputDNC . isLcaseBigOZero ()

) {
cardDrawState = CardDrawState . PLAYER1RCVW0 ;

} else if ((position != 1) && inputDNC .
isWjofPreviousPlayer (position)) {
cardDrawState = CardDrawState . PLAYER1RCVW0 ;

} else if ((position !=1) && inputDNC .
isWjprimeofPreviousPlayer (position)) {
cardDrawState = CardDrawState .

PLAYERJRCVWJPRIMEMINUSONE ;
} else {

//just store the DNC
}

} else { // From non-Idle States:
switch (cardDrawState) {
case PLAYER1RCVW0 :
case PLAYERJRCVJMINUSONE :
case PLAYERJRCVWJPRIMEMINUSONE :

cardDrawState = CardDrawState . PLAYERIDLE ;
break ;

case REQUESTCARDWAITWMINUSONE :
if (cardDrawBroadCastFlag) {

cardDrawBroadCastFlag = false ;
cardDrawState = CardDrawState .

CARDREQUESTWAITWPRIMEN ;
}
break ;

case CARDREQUESTWAITWPRIMEN :
if (cardDrawBroadCastFlag) {

cardDrawBroadCastFlag = false ;
cardDrawState = CardDrawState . PLAYERIDLE ;

}
break ;

}
}
otherPlayersChain . add (inputDNC) ;

}
}

/* Private Methods */

76

private boolean received_w_j_prime () {
//returns true if player received w_j^prime from previous

player
if (otherPlayersChain . receivedW_j_primePrevious (position))
{
return true ;

} else {
return false ;

}
}

private boolean received_w_j () {
//returns true if player received w_j from previous player
if (otherPlayersChain . receivedW_j (position)) {

return true ;
} else {

return false ;
}

}

private boolean received_w0 () {
if (this . otherPlayersChain . reveivedWZero ()) {

return true ;
} else {

return false ;
}

}

private boolean isCroupier () { //by assumption return true if
first (position 1)
return (position == 1) ;

}

private boolean turnToDraw () {
boolean positionToDraw = (position ==

CardDrawerPosition) ; //Utilizes 1st assumption
boolean numberOfCardsDrawn = (cardsDrawn <=

NumberOfCardsToDraw) ; //Utilizes 2nd assumption
if (positionToDraw && numberOfCardsDrawn) {

cardsDrawn++; //side effect!
return true ;

} else {
return false ;

}
}

}

77

6.4.20 implementation code/java code/Sha1Signature.java

import java . io . UnsupportedEncodingException ;
import java . nio . charset . Charset ;
import java . security . MessageDigest ;
import java . security . NoSuchAlgorithmException ;

class Sha1Signature {

public static byte [] getSHA1Byte (String input) throws
NoSuchAlgorithmException {
MessageDigest digest = MessageDigest . getInstance ("SHA-1") ;
digest . reset () ;
byte [] sha1 ;
try {

sha1 = digest . digest (input . getBytes (Charset .
defaultCharset () . displayName ())) ;

} catch (UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e . printStackTrace () ;
sha1 = null ;

}
return sha1 ;

}

public static String getSha1 (String input) {
byte [] result ;
try {

result = Sha1Signature . getSHA1Byte (input) ;
} catch (Exception e) {

result = null ;
}
return convertToHex (result) ;

}
/*
* Code originated from here:
* http://www.anyexample.com/programming/java/

java_simple_class_to_compute_sha_1_hash.xml
*/

private static String convertToHex (byte [] data) {
StringBuffer buf = new StringBuffer () ;
for (int i = 0 ; i < data . length ; i++) {

int halfbyte = (data [i] >>> 4) & 0x0F ;

78

int two_halfs = 0 ;
do {

if ((0 <= halfbyte) && (halfbyte <= 9))
buf . append ((char) ('0' + halfbyte)) ;

else
buf . append ((char) ('a' + (halfbyte − 10))) ;

halfbyte = data [i] & 0x0F ;
} while (two_halfs++ < 1) ;

}
return buf . toString () ;

}
}

6.4.21 implementation code/java code/Signature.java

import java . io . UnsupportedEncodingException ;
import java . nio . charset . Charset ;
import java . security . MessageDigest ;
import java . security . NoSuchAlgorithmException ;

class Signature {

public static byte [] getSHA1Byte (String input) throws
NoSuchAlgorithmException {
MessageDigest digest = MessageDigest . getInstance ("SHA-1") ;
digest . reset () ;
byte [] sha1 ;
try {

sha1 = digest . digest (input . getBytes (Charset .
defaultCharset () . displayName ())) ;

} catch (UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e . printStackTrace () ;
sha1 = null ;

}
return sha1 ;

}

public static String getSha1 (String input) {
byte [] result ;
try {

result = Signature . getSHA1Byte (input) ;
} catch (Exception e) {

result = null ;
}

79

return convertToHex (result) ;
}
/*
* Code originated from here:
* http://www.anyexample.com/programming/java/

java_simple_class_to_compute_sha_1_hash.xml
*/

private static String convertToHex (byte [] data) {
StringBuffer buf = new StringBuffer () ;
for (int i = 0 ; i < data . length ; i++) {

int halfbyte = (data [i] >>> 4) & 0x0F ;
int two_halfs = 0 ;
do {

if ((0 <= halfbyte) && (halfbyte <= 9))
buf . append ((char) ('0' + halfbyte)) ;

else
buf . append ((char) ('a' + (halfbyte − 10))) ;

halfbyte = data [i] & 0x0F ;
} while (two_halfs++ < 1) ;

}
return buf . toString () ;

}

}

6.4.22 implementation code/java code/UZeroGenerator.java

import java . util . ArrayList ;
import java . util . Collections ;

public class UZeroGenerator {
private int tCardRange ;
private ArrayList<Integer> uZeroValues ;

//public:
public void dumpUzeroValues () {

System . out . println ("values: " + uZeroValues) ;
}

public int getNextUZero () {
if (uZeroValues . isEmpty ()) {

return −1;
}

80

Object obj = uZeroValues . get (0) ;
uZeroValues . remove (0) ;
int result = ((Integer) obj) . intValue () ;
return result ;

}

public boolean removeFromList (int otherUserUZero) {
Object obj = new Integer (otherUserUZero) ; //cast
if (uZeroValues . isEmpty ()

| | (! uZeroValues . contains (obj))) {
// error number that other user requests
// has already been used, or list empty
return false ;

}
uZeroValues . remove (obj) ;
return true ;

}

public UZeroGenerator (int cardRange) {
this . tCardRange = cardRange ;
this . constructUZeroGenerator () ;

}

//private:
private void constructUZeroGenerator () {

uZeroValues = new ArrayList<Integer>() ;
for (int i=1; i <= tCardRange ; i++) {

uZeroValues . add (new Integer (i)) ;
}
Collections . shuffle (uZeroValues) ;

}

public static void main (String args []) {
System . out . println ("simple demonstation of u0 generation") ;
int t = 5 ;
UZeroGenerator uZeroGen = new UZeroGenerator (t) ;
uZeroGen . dumpUzeroValues () ;
int selectedVal = uZeroGen . getNextUZero () ;
System . out . println ("selected int: " + selectedVal) ;
uZeroGen . dumpUzeroValues () ;
int otherSelectedVal = (selectedVal + 1) % (t + 1) ;
if (otherSelectedVal ==0) { otherSelectedVal++; }
System . out . println ("removing: " + otherSelectedVal) ;
if (uZeroGen . removeFromList (otherSelectedVal)) {

uZeroGen . dumpUzeroValues () ;
} else {

System . out . println ("Error in removing") ;

81

}
}

}

6.4.23 implementation code/java code/VectorDeck.java

import java . math . BigInteger ;
/*
* Represents a deck of cards under the Card Vector Representation
*/

class VectorDeck {
private CardVectorRepresentation [] vDeck ;

final static String Seperator = ", " ;

public VectorDeck (Deck inputDeck , BigInteger primeNumberZ) {
vDeck = new CardVectorRepresentation [Deck . numberOfCards +

1] ;
vDeck [0] = null ;
for (int i=1; i <= Deck . numberOfCards ; i++) {

int cardValue = inputDeck . getCardAtPosition (i) ;
vDeck [i] = new CardVectorRepresentation (cardValue , Deck

. numberOfCards , primeNumberZ , null) ;
}

}

public CardVectorRepresentation [] getVectorDeck () {
return vDeck ;

}

public CardVectorRepresentation getCardAtPosition (int i) {
if ((i < 1) | | (i > Deck . numberOfCards)) {

return null ;
}
return vDeck [i] ;

}

}

82

6.5 Appendix E - JIF source code

File listing of JIF Files

6.5.1 implementation code/jif code/MPElGamal.jif

import java . math . BigInteger ;
import java . security . ∗ ;
import java . util . Random ;
import java . security . interfaces . ∗ ;

public class MPElGamal [label L] {

private static int __JIF_SIG_OF_JAVA_CLASS$20030619 = 0 ;

private final int{L} RandomBitLength = 50 ; //randomly
chosen

private final int{L} RandomBitLengthLess = 48 ; //randomly
chosen minus two

private MPKeyPrivate [L]{ L} privateKey = null ;
private MPKeyPublic [L]{ L} publicKey = null ;
private BigInteger{L} zPlayer = null ;

//public static int Apos = 0;
//public static int Bpos = 1;
//public static int EncryptionArraySize = 2;
//public static final String Seperator = "-";

MPElGamal{L ; this } () {
int{L} randomBL = this . RandomBitLength ; //saves from side

effect

//initialization
Random{L} rnd = new Random () ;
publicKey = new MPKeyPublic [L]{ L } () ;
privateKey = new MPKeyPrivate [L]{ L } () ;
//assignments
BigInteger{L} biPublic ;
try {

BigInteger{L} pubP = new BigInteger{L}(randomBL , rnd) ;
publicKey . setP (pubP) ;
BigInteger{L} pubG = new BigInteger{L}(

RandomBitLengthLess , rnd) ;
publicKey . setG (pubG) ;

83

BigInteger{L} privX = new BigInteger{L}(
RandomBitLengthLess , rnd) ;

privateKey . setX (privX) ;

BigInteger{L} pubY = pubG . modPow (privX , pubP) ;
publicKey . setY (pubY) ;

} catch (java . lang . NullPointerException npExp) {
//do nothing

} catch (java . lang . IllegalArgumentException ilargExp) {
//do nothing

} catch (java . lang . ArithmeticException arExp) {
//do nothing

}
}

public MPEncryptedMessage [L] encrypt (BigInteger{L} message) {
//MPEncryptedMessage[L]{L} result = new MPEncryptedMessage[L]{L

}();
return null ;

}
}

6.5.2 implementation code/jif code/MPEncryptedMessage.jif

import java . math . BigInteger ;

class MPEncryptedMessage [label L] {
public BigInteger{L} encA ; //ElGamal's A
public BigInteger{L} encB ; //ElGamal's B

MPEncryptedMessage () {

} ;
/*
MPEncryptedMessage(BigInteger a, BigInteger b) {

encA = a;
encB = b;

}

public String strOutput() {
return encA + MPElGamal.Seperator + encB;

}

public void add(MPEncryptedMessage summationElement) {

84

encA = encA.add(summationElement.encA);
encB = encB.add(summationElement.encB);

}

public void mutiply(BigInteger c) {
encA = encA.multiply(c);
encB = encB.multiply(c);

}

public void add(BigInteger a, BigInteger b) {
encA = encA.add(a);
encB = encB.add(b);

}

public void multiply(MPEncryptedMessage mpEncryptedMessage) {
encA = encA.multiply(mpEncryptedMessage.encA);
encB = encB.multiply(mpEncryptedMessage.encB);

}
*/

}

6.5.3 implementation code/jif code/MPKeyPublic.jif

import java . io . PrintStream ;
import java . lang . Object ;
import java . math . BigInteger ;

class MPKeyPublic [label L] {

private static int __JIF_SIG_OF_JAVA_CLASS$20030619 = 0 ;

public BigInteger {L} p ; //El Gamal's p, prime number
public BigInteger {L} g ; //El Gamal's g, random number less than

p
public BigInteger {L} y ; //El Gamal's y, y = (g^x)mod(p)

public void setP{L ; newP }(BigInteger{L} newP) : {L ; newP} {
this . p = newP ;

} ;

public void setG{L ; newG }(BigInteger{L} newG) : {L ; newG} {
this . g = newG ;

} ;

public void setY{L ; newY }(BigInteger{L} newY) : {L ; newY} {

85

this . y = newY ;
} ;

}

6.5.4 implementation code/jif code/PokerGame.jif

import java . io . PrintStream ;
import jif . runtime . Runtime ;
import java . io . FileOutputStream ;
import java . io . BufferedReader ;
import java . io . InputStreamReader ;

class PokerGame authority (Alice , Bob) {
public final principal{} p ;

PokerGame (principal{} p) where authority (Alice , Bob) {
this . p = p ;

}

public static PokerGame room ;

public static final void main {}(principal{} p , String args []) :{
p : }

throws (SecurityException , IllegalArgumentException)
where caller (p) , authority (Alice , Bob)
{

Runtime [p] runtime = Runtime [p] . getRuntime () ;
if (runtime == null) return ;
PrintStream [{ }] output = declassify (runtime . stdout (new

label {}) , {}) ;
if (output == null) return ;

output . println ("Starting game") ;

MPElGamal [{ Alice : }] { Alice :} pmel = null ;
pmel = new MPElGamal [{ Alice : }] () ;
MPEncryptedMessage [{ Alice : }] { Alice :} mpEncMsg = null ;

output . println ("Game finished") ;
}

}

86

References

[1] http://faculty.washington.edu/moishe/javademos/security/elgamal.java.

[2] Barbara Liskov Andrew C. Myers. A decentralized model for information flow control.
1997.

[3] Aslan Askarov and Andrei Sabelfeld. Security-Typed Languages for Implementation of
Cryptographic Protocols: A Case Study. In Sabrina De Capitani di Vimercati, Paul F.
Syverson, and Dieter Gollmann, editors, Computer Security - ESORICS 2005, Proceed-
ings of the 10th European Symposium on Research in Computer Security, volume 3679,
pages 197–221, 2005.

[4] Aslan Askarov and Andrei Sabelfeld. Security-Typed Languages for Implementation of
Cryptographic Protocols: A Case Study of Mutual Distrust. Technical Report 2005-13,
Department of Computer Science and Engineering, Chalmers University of Technology
and Göeborg University, 2005.

[5] Jordi Castellà-Roca, Josep Domingo-Ferrer, Andreu Riera, and Joan Borrell. Practical
Mental Poker Without a TTP Based on Homomorphic Encryption. In Thomas Johansson
and Subhamoy Maitra, editors, Progress in Cryptology - INDOCRYPT 2003, volume
2904, pages 280–294, 2003.

[6] David Clark. Project description. http://www.dcs.kcl.ac.uk/staff/david/msc_
projects_08.html.

[7] Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption for nonspe-
cialists. EURASIP J. Inf. Secur., 2007:1–15, 2007.

[8] Shaft Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. Computer Science Department, University
of California - Berkeley.

[9] Peter Gutmann. Lessons learned in implementing and deploying crypto software. In
Proceedings of the 11th USENIX Security Symposium, pages 315–325, Berkeley, CA,
USA, 2002. USENIX Association.

[10] Fr. Boniface Hicks. Security-typed languages, jif programming, special lecture. http:
//www.ece.cmu.edu/~ece732/lectures/18732-jif.pdf.

[11] Leslie Lamport. Password authentication with insecure communication. Commun. ACM,
24(11):770–772, 1981.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 2001.

[13] Emilie Nodet. Data-flow controll using jif in a heath care system. 2008.

[14] Prof. Rafail Ostrosky. Elgamal’s proof of homomorphism, ucla computer science depart-
ment. http://www.cs.ucla.edu/~rafail/TEACHING/WINTER-2005/L8/L8.ps.

87

http://www.dcs.kcl.ac.uk/staff/david/msc_projects_08.html
http://www.dcs.kcl.ac.uk/staff/david/msc_projects_08.html
http://www.ece.cmu.edu/~ece732/lectures/18732-jif.pdf
http://www.ece.cmu.edu/~ece732/lectures/18732-jif.pdf
http://www.cs.ucla.edu/~rafail/TEACHING/WINTER-2005/L8/L8.ps

[15] Dave King Sandra Rueda Tim Misiak Kiyan Ahmadizadeh Patrick McDaniel, Boni-
face Hicks. Jif eclipse plugin, penn state university. http://siis.cse.psu.edu/
jifclipse/.

[16] Andrei Sabelfeld. Jif exercises, chalmers university. http://www.cs.chalmers.se/Cs/
Grundutb/Kurser/lbs/JifLab2006/JifExercises.htm.

[17] Christian Schindelhauer. A toolbox for mental card games. Technical report, 1998.

[18] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[19] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental Poker. The Mathe-
matical Gardner, pages 37–43, 1981.

[20] K. Vikram Lantian Zheng Stephen Chong, Andrew C. Myers. Jif reference manual,
cornell university. http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html.

[21] K. Vikram Xin Zheng Nate Nystrom Lantian Zheng Steve Zdancewic Stephen Chong,
Andrew Myers. Jif’s home page, cornell university. http://www.cs.cornell.edu/jif/.

[22] Yi Mu Weiliang Zhao, Vijay Varadhara jan. A secure mental poker protocol over the
internet.

88

http://siis.cse.psu.edu/jifclipse/
http://siis.cse.psu.edu/jifclipse/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/lbs/JifLab2006/JifExercises.htm
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/lbs/JifLab2006/JifExercises.htm
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://www.cs.cornell.edu/jif/

	Introduction
	Mental Poker
	Definition
	Assumptions
	Existing Work
	Data Structures
	Distributed Notarization Chain
	Card Vector Representation
	Card Permutation Matrix
	Delta and Epsilon Sets
	Elgamal

	Algorithm Description
	Introduction
	Initialization
	Card Draw

	Implementation of Mental Poker in Java
	Initialization States
	Card Draw States

	JIF
	Introduction to JIF
	Decentralized Label Model
	Values
	Principals
	Labels
	Relabeling

	Implicit and Explicit flows
	Decentralized Label Model in JIF
	Example: Variable Declaration
	Example: Declassification
	Example: Array Handling
	Example: Classes, Method signatures and Exceptions

	Criticism of JIF
	Tools
	Learning JIF

	Mental Poker in JIF
	Introduction
	Methodology chosen
	Annotations
	Implementation
	Uplifting a Java class
	Porting a Java class
	Implementing a JIF class

	Evaluation
	Future Work

	Appendices
	Appendix A - Project Description
	Appendix B - Install JIF on ubuntu linux
	Appendix C - Directory structure of deliverable
	Appendix D - Java source code
	implementation_code/java_code/CardDrawState.java
	implementation_code/java_code/CardPermutationMatrix.java
	implementation_code/java_code/CardVectorRepresentation.java
	implementation_code/java_code/DNChain.java
	implementation_code/java_code/DataChainLink.java
	implementation_code/java_code/Deck.java
	implementation_code/java_code/DeltaEpsilonSet.java
	implementation_code/java_code/EcnryptedDeck.java
	implementation_code/java_code/ElGamal.java
	implementation_code/java_code/EncryptedCard.java
	implementation_code/java_code/EncryptedPermutationMatrix.java
	implementation_code/java_code/EncryptedVectorDeck.java
	implementation_code/java_code/InitializationState.java
	implementation_code/java_code/LcaseDeltaSet.java
	implementation_code/java_code/LcaseEpsilonSet.java
	implementation_code/java_code/MPElGamal.java
	implementation_code/java_code/MPEncryptedMessage.java
	implementation_code/java_code/MPGame.java
	implementation_code/java_code/Player.java
	implementation_code/java_code/Sha1Signature.java
	implementation_code/java_code/Signature.java
	implementation_code/java_code/UZeroGenerator.java
	implementation_code/java_code/VectorDeck.java

	Appendix E - JIF source code
	implementation_code/jif_code/MPElGamal.jif
	implementation_code/jif_code/MPEncryptedMessage.jif
	implementation_code/jif_code/MPKeyPublic.jif
	implementation_code/jif_code/PokerGame.jif

