
TECHNOLOGY LAB —

What’s the difference between
college-level and corporate programming?
You'll have to make a leap to get to "paid professional" status.

 - 12/1/2013, 10:00 PM

This Q&A is part of a weekly series of posts highlighting common questions encountered by

technophiles and answered by users at Stack Exchange, a free, community-powered network of 100+

Q&A sites.

rdasxy asks:

When they graduate and get their first job, a lot of students feel like they don't really know how to

program even though they may have been good programmers in college.

What are some of the differences between programming in an academic setting and programming in

the 'real world'?

STACK EXCHANGE

SIGN IN

St
ac

k 
Ex

ch
an

ge

What’s the difference between college-level and... https://arstechnica.com/information-technology...

1 of 4 29/05/2017, 17:59



See the original question here.

Programming alone does not a programmer make

Michael answers (54 votes):

In a traditional undergraduate computer science program you learn just programming. But the real

world doesn't want people who are just programmers. The real world wants real software engineers. I

know many job descriptions don't seem to express this distinction, which only confuses the matter. In

the real world you need to be able to:

Gather and analyze requirements when they aren't directly given to you.

Design and analyze architecture with near endless possibilities.

Create test plans and act on them to evaluate and improve the quality of a system.

Work collaboratively on a team of people with different backgrounds and experience levels.

Estimate and plan work even if you don't know exactly what to build.

Communicate effectively with stakeholders who have different needs that don't necessarily align.

Negotiate schedule, budget, quality, and features without disappointing stakeholders.

Oh yeah, and you also have to be able to write code too, though that takes, on average, only 40 to 60

percent of a software engineer's time.

So, it's not that freshly minted computer science undergrads don't know how to program (many are in

fact, very good programmers). It's that many of them don't know how to do anything else.

Code in a vacuum

back2dos answers (22 votes):

At university, your teacher gives you:

A well defined, isolated problem, the solution of which can be provided within a short and

well-defined time span (and it will be discarded afterward).

A well-defined set of tools that you were introduced to prior to assignment

A well-defined measure for the quality of your solution, with which you can easily determine

whether your solution is good enough or not.

In the "Real World":

The problem is blurry, complex and embedded in context. It's a set of contradictory requirements

that change over time and your solution must be flexible and robust enough for you to react to

those changes in an acceptable time.

The tools must be picked by you. Maybe there's already something usable in your team's

10-year-old codebase, maybe there's some open source project, or maybe a commercial library

library will have it. Or, maybe you will have to write it on your own.

To determine whether the current iteration of your software is an improvement (because you're

almost never actually done with a software project), you need to do regression testing and

usability testing, the latter of which usually means that the blurry, complex, contradictory, context-

embedded requirements shift once again.

Conclusion

What’s the difference between college-level and... https://arstechnica.com/information-technology...

2 of 4 29/05/2017, 17:59



Programming in school and programming in the real world are so inherently different to the point where

there's actually very little overlap. CS will prepare you for "real world" software development like

athletics training would prepare an army for battle.

School is simple

Mike Dunleavy answers (6 votes):

Good answers. Let me just add, academic programming tends to be almost toy-like in scale. This is good

for teaching. As a teacher, you are trying to convey ideas most efficiently. The downside is realistic

programming is so qualitatively different, it's hard to bridge the gap.

One area of difference is in performance analysis. I've written many posts trying to point this out.

Performance analysis is only superficially about algorithms and measuring. To do it really effectively, you

have to approach it as a process of debugging.

Another area of difference is maintainability. This encompasses everything from style to domain-specific

language design. You can't do it effectively unless you actually know what you're trying to minimize.

These things are not taught, and they make an enormous difference in productivity.

Real world code

dimitris mistriotis answers (5 votes):

Update: As if someone was reading my mind: "Graduate expectations versus reality"

My take, two other factors:

Problem size: In academia, I mostly had to develop software "from scratch," which meant that most of

the time, the largest program I had encountered was the largest one I wrote. This de-emphasises the

necessary capability to handle and cope with complexity that emerges from different pieces of software

interacting together. If I was aware of the effort needed to comprehend with complexity, I might have

chosen not to be in the industry at all.

Reading vs. Writing: Another side effect of problem size is that often, in the "real world" we are

exposed to work that has been written by others, either for maintenance purposes (I did no

maintenance in academia anywhere), extension, or simply division of labor. Therefore reading code

becomes many times more important than writing it.

A proposal for improved programming education: Academia should expose us more to real-world

situations without regressing to vocational training. Doctors have to face a corpse at some point to see if

they are "made for it" (I've heard stories of people dropping the course after this experience). If I had

seen in my early twenties a 20K LOC project comprised of different programming styles, which I had to

understand in one day and amend a bug in three, I might have considered other career options

—though probably not.

Related: "What should I expect from my first programming job?"

Find more answers or leave your own at the original post. See more Q&As like this at Programmers, a question

and answer site for professional programmers interested in conceptual questions about software

What’s the difference between college-level and... https://arstechnica.com/information-technology...

3 of 4 29/05/2017, 17:59



READER COMMENTS SHARE THIS STORY

← PREVIOUS STORY NEXT STORY →

Powered by

(Recommended) 5
Canadian Dating
Sites that Actually
Work
Best Dating Sites in
Canada - Best Online
Dating Sites

What Created the
Moon?
Data-Driven
Simulations Test
Theories
iQ by Intel

True north,
carbon-free? What
the Arctic tells us
about climate
change
Home | University of
Calgary

16 Amazing
Mysteries that
Science Can't
Explain
DailyForest

This Genius Device
Is Being Scooped
Up By
Entrepreneurs
Everywhere
Expert Market

Think The F-15 Was
Bad - You Should
See This Plane
theBrofessional.net

RSS FEEDS
VIEW MOBILE SITE
VISIT ARS TECHNICA UK
ABOUT US

CONTACT US
STAFF
ADVERTISE WITH US
REPRINTS

CNMN Collection
WIRED Media Group
Use of this Site constitutes acceptance of our User Agreement (effective 1/2/14) and Privacy Policy (effective 1/2/14), and Ars
Technica Addendum (effective 5/17/2012). Your California Privacy Rights. The material on this site may not be reproduced,
distributed, transmitted, cached or otherwise used, except with the prior written permission of Condé Nast.

development. If you've got your own programming problem that requires a solution, log in to Programmers

and ask a question (it's free).

Related Stories

Sponsored Stories

Today on Ars

What’s the difference between college-level and... https://arstechnica.com/information-technology...

4 of 4 29/05/2017, 17:59


