
Wireless LAN Authentication

DAWN (Dhcp Authentication for Wireless Networks)

Athens University of Economy and Business

Dimitris Mistriotis

Supervisor: G. Polyzos

Table of Contents

Wireless LAN Authentication...1
1.0 Abstract..5
2.0 Authoring, contact information..6
3.0 Assumptions - design principles..7

3.1 Assumptions...7
3.2 Component Description ..7
3.3 Design principles...9

4.0 Description of various components..10
4.1 Higher level presentation – User's point of view..10
4.2 Network Layer presentation...13

4.2.1 Examining Linux's fire walling capabilities from project's point of view.
...13
4.2.2 Constructing network layer behavior in Linux environment...............15

4.3 Database level Presentation...18
4.3.1 Overview..18
4.3.2 dhcp_clients database...18

4.4 Dhcp handler..23
4.4.1 Introduction...23
4.4.2 How to handle the DHCP events...23
4.4.3 Privilege Handling..25
4.4.4 Implementation..25

4.5 User Remover..26
4.5.1 Introduction ...26
4.5.1 Introduction ...26
4.5.2 Correct Syntax..26
4.5.2 Correct Syntax..26
4.5.3 Implementation...27
4.5.3 Implementation...27

4.6 CGI scripts..28
4.6.1 login page...28

4.6.1.1 Introduction...28
4.6.1.2 Implementation..28

4.6.2 login cgi..29
4.6.2.1 Introduction...29

4.6.2.2 Implementation..30
4.7 Initialization – Termination script..32

4.7.1 Introduction..32

4.7.2 Overview...32
4.7.3 Implementation...33
5.0 Installation procedure..34

6.0 Source Code...36
6.1 prepare_iptables.sh...36
6.2 dhcp_clients.sql..39
6.3 local_AD.sql..41
6.4 Grant Tables...42
6.5 Proxy.java...43
6.6 login-page.rb...45
6.7 login-cgi.rb..52
6.8 user_remover.rb..60
6.9 dhcp_handler.rb..65
6.10 init_dawn.sh...71
6.11 import_commands.sh..72
6.12 install_script.sh..73

Appendix I - Short introduction to Ruby..75

1.0 Abstract

The following document describes an authentication scheme (DA
Authentication module” for a Peer-to-Peer Wireless Network Confederation as
described in relative papers.

In this scheme the client firstly acquires an IP address using a client
implementation of the DHCP protocol something which can be considered generic
for most modern operating systems (both in desktop and mobile areas). After
acquiring IP address, the client is restricted in network level, having the power to
do nothing else except authenticating. Authentication (log in) is done by using a
web interface where a user name and password pair are provided. After a
successful login, the previously unavailable services such as Internet usage are
available for use as well as for accounting or other operations which may initiate.
The usage of local resources may be stopped after the dhcp time lease expires or
when a certain trigger is being pulled (such as a long time inactivity from user's
part).

This project abstracts the P2P nature serving only local users until the
final model is stabilized. Also it's whole structure is organized in such way that
alternative methods of authentication (special treated users, signatures instead of
passwords, etc) can be added easily in the future.

2.0 Authoring, contact information

This project has been deployed by Dimitris Mistriotis under surveillance of H.
Eustathiou and professor G. Polyzos for Athens University of Business and
Economics, at summer semester 2003. For further references questions related to
this document, the source code or relative information, the following e-mail can
be used: besieger@yahoo.com (Please allow up to 3 days for an answer).

3.0 Assumptions - design principles

3.1 Assumptions

Thinking from user's point of view, our desire is to provide maximum
available usability and simplicity. In order to achieve this goal an attempt has
been made to let users interact with various mechanisms using knowledge which
they already have from previous home or office computer experience. So instead
of using a typical client-server pair of applications, and therefore introducing
users with a “new” program, which they need to “learn” how to use, a Web
browser – CGI script pair is used instead. So required knowledge reduces to Web
browser know-how, something that can be easily considered as zero effort from
user's point of view, since we can be positive that most people owning a personal
computer or similar equipment know how to use a Web browser.

From designer's point of view an intention to provide a “proof of
concept” document instead of a “commercial product” was expressed. Main aim
was to reach a working solution in tight time schedule. This affected some
choices made during the process such as programming languages used. Of
course someone continuing this project will be able to proceed into a full
commercial-like solution with minimum effort.

3.2 Component Description

(Operating System, Programming Languages, DBMS)

First of all the chosen OS for deploying this project is GNU-Linux.
This occurred for many reasons: first of all the availability of many different
platforms using Linux kernel. Availability that varies from Intel based hardware
to embedded devices area. So from the programmer's point of view, software
developed in an easy to find personal computer, can be used with very few
adoptions to completely different platforms and devices if needed. Secondly this
project assumed that various different parts such as fire walling rules,
information stored on databases connectivity with web interfaces and others,
which had to be joined together forming a tight and well performing application.
In order for that to be achieved, high demand for scripting languages which
would “glue” these parts together rose from the very beginning of this project. So
one way or another, a high demand for a *nix like operating system to be used

arose.
There is the argument of why choosing Linux instead of an another

similar (to the purposes of the project) OS, such as NetBSD for example. The
answer has to do with the high availability of information such as tutorials,
articles in web-pages, books etc, as well as far more people with the ability to help
if needed, which would help to solve arising problems faster than by using
another OS. Also in later stages of deployment, it will be easier for to find a Linux
“expert” to assist in future maintenance than a person with desired knowledge of
another OS. The OS choice dictated the use of iptables as the fire walling program
(interface with kernel) used in it as the standard one in this environment. But on
the other hand the tools used are in one way or another available and in other
OSs so the task of porting this application elsewhere is an easy one.

After choosing OS, the choice of a programming language arose. This
project is concerned as a “proof of concept” one, which means that a solution to a
problem is far more desired than full working code ready for the mass-market. So
a fast prototyping language is needed which would help in speeding up
development. Another important element on choosing programming language is
good interaction with system calls and functions, as well as processing of input
and output generated by various different utilities. These are some of the reasons
that brought to the decision of adopting a scripting language as the premium tool
for coding. Of course the host language must also be powerful enough to cope
with things as database interaction and have abilities for Object Oriented
programming (for good software design, maintenance) among other things such
as code easy to read and understand. The choice was between Ruby and Python.
The former was chosen for objective as well as personal reasons. The code is
easier to read in Ruby because it reminds more of typical (Java, C++) coding
conversions. A personal favor and experience in this language had something to
do with choosing decision while code in Ruby seems to me more easy to read and
understand (and perhaps reproduce in an another language if needed) than in
everything else, that's because it's syntax resembles more traditional Object
Oriented languages, but not in favor of flexibility.

Last choice was which database Software to use. Here MySQL was the
best choice for many reasons. First of all a Relational DBMS is needed because
Object Oriented attributes aren't needed for this project. MySQL compared with
other databases in the RDBMS field is the fastest one available in the market
today, has interfaces for many programming languages (including Ruby) as well
as very good interfaces for using it, creating-importing backups, security features
(precise ways of granting privileges) and good license scheme (free for non-
commercial use, pricing which can be negotiated for commercial use), and of

course high availability of users and documentation.
So concluding we have an underlying OS which is extremely capable in

many ways, while on the other hand many parts of it's operation may be altered
in order to fit to what is desired for the developed application. This OS is backed
up with one of the most capable RDBMS which can handle various data needed
to be processed. At last but not least an Object Oriented programming language
which can help into transforming ideas to working code (a) fast, (b) with high code
quality, is used.

3.3 Design principles

Although as said this project has a “proof of concept” orientation,
guidelines/directives and concepts of secure software design have been taken
into account and followed as much as possible. Concerning the different
processes the attempt to have minimum privileges as well as privilege segregation
according to functionality has been taken. Only one process runs constantly with
administrative (root user / superuser) privileges and this process doesn't accept
input generated from external sources.

On the other hand input is being checked whenever possible in order
to avoid situations such as cross-side scripting or buffer overflow attacks. Also
measures against well known security breaches in the Linux world have been
taken. One major issue is the effort to have easy to understand and maintain
application code, commented as good as possible. By having this in hand it's very
easy for someone to enhance security in the future with the minimum effort
needed. This is one of the most important issues in developing secure application
and it's the reason why many application or operating systems widely used fail to
achieve the level of security needed by their users.

Last but not least: According to CERT statistics two out of three
successful security breaches occurred because of errors which have to do with
programming errors (such as those stated before). The remaining one third has to
do with not correct configuration by system administrators. The only defense for
this is initial secure configuration, which has also been taken into account.

4.0 Description of various components

4.1 Higher level presentation � User's point of view

In this section following a top-down approach, the internals of DAWN
project will be explained. The start should be the higher level available: the end-
user, human experience. From there on the whole project will be decomposed to
it's parts explaining their design and how they interact with each-other. This is
also the approach taken while developing the project: A human-centered concept
of how things should work for the user was taken into consideration and this
dictated the rest of the process. Screen shots have been taken from two
commonly used desktop OSs: Windows XP and Red hat 9.0 in order to show ease
of use as well as OS independence (from client's point of view).

User unknown to system (initial phase)

a. At the beginning user hasn't turned on a device or any equipment
and hence is unknown to the system.

Newcomer phase

b. First of all the client-user turns on an wireless-equipped device
(which fits in w-AD scheme), let's say a desktop computer. IP address is acquired
using DHCP protocol, on the client's side. This is being done on the bootstrap
phase of modern OSs.

c. We have entered authentication phase. From here on the user can
do nothing else but authenticate, in order to use Internet or local services. For
example user can't reach (via ping) www.google.com

To say the truth user can only perform single dns requests (only one
host per time, not zone transfers). In order to authenticate user must start a web-
browser and print a desired destination (let's say again google or aueb). Instead of
seeing destination web address's contents, a redirection to login page is
performed.

d. User supplies the user name and password pair provided by local

administrator in which user belongs.

If everything is OK, user sees a page saying that everything was
performed correctly. After a short time period (some seconds), necessary for the
system to update privileges and rights for the user, web browser will go and visit
the page originally chosen by user. This is the end of the authentication phase
and we enter the final one for this project.

If there is a problem (for example incorrect password),user will be
informed about it with a simple page which also contains instructions of how to
log-in correctly in case of a problem.

e. Now the user can view the original web page (which means that web
capabilities have been acquired), as well as other Internet services.

When user leaves local-AD, something that the system will understand
by not receiving a DHCP request for continuing using user's IP, all relative
information is removed. Now we are again in phase (a). This may also happen if
user hasn't authenticated properly and leaves local-AD. (from (d) to (a) change of
states). So the state-diagram of user presented is the following one:

(here the thick lines represent “normal” usage, while the dashed-doted ones cases where
user gives incorrect password or leaves AD without authenticating (c-d or c-a)

As we know this diagram can be optimized (or compressed) to a
smaller, more efficient one which also represents the treatment towards user in
this project:

As we can see from above:
A. By default the only thing that can be done is an issue of a DHCP request. This
applies to devices which are bootstrapping as well as those who don't use their
wireless devices (end of usage, shutdown, leaving AD etc).
B. From here the user may only authenticate and do nothing else except perform
DNS queries, this happens as we can see in later sections because we want to
capture user's destination so that user can be redirected there later. If user tries
to do anything else (ftp ssh or telnet for example), he will be informed that logging
in using a browser is required. Also the right to get lease time via a DHCP query
is granted.
C. Here user has authenticated, so everything is open. “Everything” means access
to Internet (via NAT) as well as to local machine (example for DHCP lease, as well
as for future services such as statistics or whatever may arise)

This is in short the whole concept and scheme of this project. To
supply an easy-to use authentication method from user's point of view, but with
the maximum security and performance that can be achieved. In the next sector
what happens in network layer (IP level) is discussed. The network level plays
fundamental role in this project, everything else has been build around it and
therefore it is the most important part of it.

4.2 Network Layer presentation

4.2.1 Examining Linux's fire walling capabilities from project's point of view.
(Short introduction to IP tables)

The aim here isn't to go too much into detail of how things are
deployed in gnu-Linux environment or the design principles behind it. The basic
points someone should know concerning this project about iptables and fire
walling in Linux environment are the following:
� fire walling, NAT, and routing facilities are part of Linux's kernel, therefore

actions are taken as fast as possible (concerning hardware, current processing
load and other obvious restrictions).

� Interface is a program located under /sbin directory, is run in command line
(or with a system command in a programming language) and accepts
parameters following well known *nix semantics. Of course root privileges are
needed and hence the need to have some processes running with such
privileges.

� In modern kernels the philosophy of a stateful firewall is applied. This
(concerning this project) means that rules can be applied easily having more in
mind “what” should be done instead of “how” it should be done. So if allowance
of connections to a web port are desired to be allowed, this can be done by
issuing an one-line command such as: “/sbin/iptables -t tcp –-dport 80 -j
ACCEPT”, and the internal mechanisms will handle all the information, while
in a stateless fashion about 3 to 4 or more commands would be needed for the
same results.

� As we will see later on behavior of iptables can be altered in order to fit user's
needs for customization. As we've seen in previous section there are three
categories of users. These facilities will be used in order to have a direct
mapping of this project system's behavior.

A description of how connections are treated under iptables follows,
more information can be found in various tutorials or articles in various web
locations. One of the best available, written by authors of this software is the
following one:

“http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO-6.html”

Abstracts of this document are used in the following pages. Having in
mind this information someone can get into how things work and then this
knowledge will be applied in this particular project.

Packet traversal in iptables environment (origin of image:
http://www.knowplace.org/netfilter/syntax.html)

Every IP packet that comes through a network interface, or is about to
leave one, has to pass a number of chains where the decision of what should be
done with it will be taken. If the packet has to do with initializing a new
connection, the PREROUTING chain will be the first one where decisions will be
made. If the packet has localhost as it's destination address then it will follow
through the INPUT chain and then it will be delivered to the local process. In case
localhost is used as a router then the FORWARD chain will be consulted for
routing related information. After that before leaving the host, POSTROUTING
chain will be consulted. For packets generated by local programs,OUTPUT chain
is consulted firstly, followed by POSTROUTING chain as above.

Also iptables has the concept of tables. Three tables exist: filter, nat,
and mangle which process relative information. For example the filter table has
to do with firewalling, and mangle with packer alteration/modification. The whole
scheme can be demonstrated in the image at the top of this page.

At last as stated in iptables capabilities there is the capability to define
new chains who have particular interest to different customized needs. An
example of such behavior is a chain who will process authenticated user's traffic
towards the local machine.

With this knowledge in mind it is easier to understand the scheme and
the policies applied in the network layer. In the following section what is desired
to be done concerning the user (section 4.1) are combined with the means
available to achieve this goal (this section, 4.2.1). So the backbone of this scheme
follows, while text starts to become more technical.

4.2.1 Constructing network layer behavior in Linux environment

As stated in previous section we have to cope with three categories of
users (unknown-user, newcomer and authenticated) while the users interact with
three main chains of iptables (INPUT, FORWARD and PREROUTING). In the
following table the desired behavior for each user class – chain is demonstrated:

User class \ chain INPUT FORWARD PREROUTING

Unknown (default) Can issue a DHCP
request.

Can't do anything
else.

Can't use the
machine for
forwarding

No rule applied

Newcomer a. Can issue DHCP
request (for more
lease time).

b. Can use local web
server (so that user
can authenticate).

c. Can use local
proxy (which
redirects to web-
server
authentication
page).

d. Can perform a
DNS single host
query. (the reason
why follows)

e. Can't do anything
else.

Can't use the
machine for
forwarding

All connections
which are not
targeted to
localhost, are re-
directed to local
proxy process. This
process redirects
web-requests to
login page, while
shows a banner to
all other services
(such as ftp, ssh or
irc)

Authenticated No restrictions, can
do anything

Connections are
forwarded using
local machine with
NAT facilities

No rule applied
(note: NAT has to do
with postrouting)

Chains to handle policies specified in the previous page are
demonstrated in section 6, more precisely in 6.1 in “prepare_iptables.sh” script.
This script must be run before anything else in this project, so the best location
for it is at system's initialization process. Also because Linux doesn't keep
iptables related information for future reboots, rules need to defined at each
startup. This means that there is no need to “stop” anything before shutdowns or
reboots occur as well. Text in parentheses in this section shall be considered as
reference to code in section 6.1, prepare_iptables.sh .

Two network interfaces were used. The following naming conversions
that applied in many documents is to define eth0 as name of the external
interface (connected to Internet), while eth1 is the name of the internal interface
connected to the LAN via the wireless bridge (lines 11, 12). Line 11 follows:

11 client_interface=eth1

Instead of describing how every chain is defined for the previous nine
combinations, one will be demonstrated, while the rest follow the same principles
and syntax. The example will be the chain responsible for newcomer's prerouting
behavior.

First of all the new chain (since it's not in the default ones) is defined in line 47:

47 $IPTABLES -t nat -N newcomer_prerouting

The rules are applied in lines 69 (a comment) and 71:

69 #newcomer_prerouting (nat table)

71 $IPTABLES -t nat -I newcomer_prerouting -i $client_interface -p tcp --
destination \! 192.168.0.1 -j DNAT --to-destination 192.168.0.1:$our_proxy_port

Rules are inserted in a stack (FILO) fashion, which happens by using
the -I option. This doesn't affect behavior here, since we have only one rule but
this is important in other chains. What we see here is that tcp connections (-p

tcp) towards a machine other than local (--destination \! 192.168.0.1), are
redirected (-–to-destination) to localhost, local proxy-port
(192.168.0.1:$our_proxy_port) which will handle the request.

Some questions that rise here are the following: First of all: How can
we direct a newcomer to this chain? Which brings us to how we can understand

that a newcomer has entered local-AD. Also after answering these questions,
someone should ask how we remove the direction to this chain when user
changes state. As we have seen before section 4.1) a newcomer may leave AD
without authenticating (so there is the need to remove information related with
him/her), or may become an authenticated user, where there is the need to alter
information related with the newcomer state and direct to chains which have to
do with authenticated users instead of newcomers.

Answers to these questions are given in following sections. Without
altering the flow of this text, how everything is done has to do with iptables
capabilities. By issuing the following command in dhcp_handler.rb, we give an
extra-rule in the rule-stack for passing connection handling to an
newcomer_prerouting chain, when a packet has a specific source address:
system("iptables -t nat -I PREROUTING -i #{Client_Interface} -p tcp -s
#{@latest_IP_address} -j newcomer_prerouting")

4.3 Database level Presentation

4.3.1 Overview

Up to now we have understood the desired behavior in the network
layer. It is obvious that some data are generated through all the processes, which
need to be re-used or altered. For example we want to record that a newcomer
has entered local-AD, the IP address that was assigned by DHCP-server (daemon)
and MAC address as well. Then after authentication information such as user
name (which is now known) and needed for Accounting processes, must be stored
somewhere. As stated in the first sections MySQL was used for these purposes.

Two databases are used: dhcp_clients and local_AD. The former is
used for storing and retrieving information related to the current status of users
(clients using local AD services) while the later stores information specific to local
AD. For the moment these are configuration data such as the name of the
wireless device, AD's name etc, while on the other hand there are user name-
password pairs of local users. For the moment passwords are stored in plain text
until a different method will be decided. This is also the place were
communication with other Domains will be established, when they want to check
user status.

Definition of dhcp_clients is at section 6.2. At 6.3 definition of local_AD
database can be read, along with some sample data and default configuration.
Grant tables are in section 6.4. Grant tables of database are designed with the
least-privilege concept in mind, something that will be more obvious later on
where we will see processes accessing them. For example all users must be
located on local host, since there is no need for remote connections.

4.3.2 dhcp_clients database

As we can see (in section 6.3), this database consists of three tables:
Current_Clients (line 26) and Authenticated_IPs (line 11) and Original_Destination

(line 48). Below we can see the data elements of each table and the relative
information that is stored.

4.3.2.1 DHCP clients table

Firstly beginning with Current Clients table. Each client is represented
in a single row which consists of six columns:
� IP address: which holds client's IP address.
� Mac Address: same as before but with MAC address.
� Username: As we've seen in section 4.1 user provides a similar with an e-mail

address username. Here the part before the character “@” is included
(username inside the domain).

� Domain: As before but now we have the domain part (example:
aueb.domain.gr), which is the domain in which user belongs (part after the “@”
character).

� User info: Can be described as the union of Username and Domain, or even
better what user supplies when prompted so. Example:
dimitris@aueb.domain.gr . We have more than needed data stored here and
that's because we are still in a temporary situation where what will be used in
the final scheme is not yet known. Therefore necessary redundancy is applied.

� Timestamp: When the user arrives a time stamp is applied. The time stamps
here have the maximum length that MySQL can provide (from year to second),
which explains their length (14 digits). These time stamps will be given to the
user's browser (again as described in section 4.1) in order to be mixed with the
plain text password before being hashed and sent back for processing. This
process is necessary because it helps against the so called replay-attacks. If
user replied through a browser with only an encryption of a password, then a
third party watching the traffic could later be acquire user's identity with the
following way: login with a “fake” browser, where instead of encrypting a plain
text password, what was captured from watching a previous connection is
being send. This attack has been used many times in the past in various cases.
By demanding an answer which includes something unique (such as this time
stamp), the whole scheme becomes safer against replay attacks. Since there is
a different time stamp assigned with each user, relative data should be stored

here.

Because the previous table is more important for this project's scheme
than the other's, an operational usage-demonstration follows:
1. When a user enters local-AD and gets an IP address, a query similar with the

following is issued to MySQL:
INSERT INTO Current_Clients (IP_address, MAC_address, Username, Domain,
User_info, Timestamp) VALUES ('IP_address','MAC', NULL, NULL, NULL, NOW());
Where NOW() represents the time stamp of query's issue.

2. After a successful authentication database must be altered in order to reflect
recent changes, so a query similar to the following is going to be issued:
UPDATE Current_Clients SET Username = 'login', Domain = 'domain', User_info = 'user'
WHERE IP_address = 'IP' LIMIT 1 ;
“Limit 1” is placed having speed considerations in mind, since only one user
has authenticated there is no need to traverse the table searching for a second
one.

3. Finally when we are informed by the dhcp daemon that user has left local-AD
we can remove relative data:
DELETE FROM Current_Clients WHERE IP_address = 'IP_address' LIMIT 1 ;
Or something similar if we remove using user name (the WHERE part would be
different)

4.3.2.2 Original Destination table

This table's structure is far more simpler, as well as the functionality
that it serves. What we want here is to store which site user originally indented to
visit when using the browser, before the authentication process. We have to
fields:
� IP address: as user is “attached” with the IP provided, and
� web destination: where 200 characters (more than enough) are supplied.

4.3.2.3 Authenticated IP addresses table

Only one field:
� IP address: This table is used instead of using a formal Inter Process

Communication mechanism. Reasons why have to do with easier and faster
implementation, and uncertainty about which method fits best. When a user
authenticates successfully the IP address is placed here. Process which has to
do with applying different privileges in network level reads this table (by issuing
a SELECT query) and then removes the data (a REMOVE query). So we have
the mechanism of a pipe or of a FIFO queue in Linux environment.

4.3.3 local AD database

In this database, shown in section 6.3 two tables are stored:
Configuration and local users.

4.3.3.1 Configuration table

This table holds configuration information about local AD as well as
system's behavior. Each row represents an attribute – value pair:

� Attribute: the name of an attribute, such as wireless_device or AD name
� Value: for the value of a certain attribute, such as eth1 and “aueb.domain” for

previously mentioned values.

4.3.3.2 Local Users table

Again we have a simple scheme here, as things are somehow
premature for a final decision:

� Username: As stated in 4.3.2.1 (DHCP clients table), with an e-mail line fashion
and

� Password: Stored in plain text format, until decided otherwise.

4.3.4 Grant tables

Grant tables, whose source code is on section 6.4, are designed having
the least privilege concept in mind. Each process defined by a user name has
rights to perform only the operations that is allowed to and nothing further. In
order to see this in action, source code needs to be read, which lays in section
6.4.

4.4 Dhcp handler

4.4.1 Introduction

Up to now we have a concept of what should be done but we haven't
interfere with how actions and decisions are taken. There are two points which
will be mentioned. The former has to do with querying the dhcp server and
reacting to specific events. The latter has to do with user authentication with the
web interface. In this section reaction with dhcp server as well as other related
issues will be addressed. One of the most important parts, which has to do with
future P2P extensions of the project follows at last section.

4.4.2 How to handle the DHCP events

After some research several ways were found that could help into
querying the dhcp server for specific information. Some seemed to fit more than
others for various reasons. We will begin by describing the ones who were
rejected, a path which will lead to the final choice made.

First of all dhcp server has the so called OMAPI support, where
“OMAPI is an programming layer designed for controlling remote applications, and
for querying them for their state.” as stated in it's man page. After studying the
A.P.I. Structure the following problems arose: first of all it supplies only queries
per single IP address: we can't ask for example what has changed since “last
query”. The problem with this approach is that track should be kept with the
previous state of every single IP address, issue one call for each one of them and
then compare the results. The computational task is huge the resources needed
in time and memory fairly large. Another element is that this API can be used
only from C / C++ programs, limiting portability between languages. This can be
solved in many ways, but adding to the previous reason makes this option to be
rejected at once.

The second option was using ulog daemon. In IP tables a -log
parameter can be used in order to log a certain packet. Ulog daemon can be
configured of what should be done with that packet, actions such as informing a
relational database such as MySQL. This scheme would be more than good for
this project for various reasons: High level abstraction is the more obvious. The
problem with ulog is that it sometimes “looses” - drops packets when operating

under heavy load. All packets are equal from ulog's “point of view”, but that
doesn't happen with our project. Loosing an IP packet of an authenticated user
may cause problems, such as annoyed clients. There wouldn't be a problem if
heavy load (filling all buffers of ulog) was rare. But after discussions with other
researchers of this project, a great number of packets originating or destined to
clients, if not all, are going to be logged for accounting purposes. So ulog will
always work under this circumstances. Using it would add obstacles to other
researchers and cause problems in future development. As a result this option is
also dropped.

A different approach followed, which was also the first attempt with
working code. Dhcp server could provide debugging information stored into a file.
Every single operation is recorded there if needed. After altering the initialization
process of dhcp, all relative information was sent to a Unix pipe-file. A process
was reading information from this file filtering changes interesting to this project,
these information was passed (again with a pipe-file) for further processing. The
advantages were that the relative information was supplied without loss of data
or other problems. Disadvantages had to do with having to cope with a really
messy approach: dhcp initialization script had to be altered, with no obvious
reason why to someone studying it. This method is quite unorthodox: using data
originally destined to debugging for other purposes, which means hard to explain
to someone. Of course if using debugging data is really needed the problem of
having dhcp handling (by this project) halted, adds complexity to the project. We
are close to a solution, but not this one.

The final choice was to parse a status file generated by dhcp server,
named “leases.dhcp”, which holds exact information such as IP addresses
provided, lease times, MAC addresses etc. One big advantage is that this file is in
pure text format containing only ASCII characters, this means that it's easy to be
parsed and extract by familiar Unix/Linux utilities. After some research an
extremely capable utility came into view, named dhcp status (“dhcpstatus.pl”).
Dhcp status is part of most modern Linux distributions and it's functionality is to
produce very well formated text based reports of Dhcp server, by parsing the
“leases.dhcp” file. The different changes of Dhcp server are reported to our
program by spotting differences between two sequential reports, using the generic
Linux diff command, which produces differences between two text files, and
parsing output in order to derive information.

Summarizing: We need to know when something changes about dhcp
leases, because this information is important in handling clients states. The
safest and most practical method is to parse text files generated and maintained
by Dhcp server. What is needed is not file's contents but differences between

them. So we observe every two seconds by default what has changed, concerning
the Dhcp server. Differences are handled accordingly.

4.4.3 Privilege Handling

One function that this program provides has to do along with coping
with Dhcp events, is altering privileges of authenticated users. Decision has been
made to place this responsibility here, because this is the only process of the
whole project that needs to be run as “root”. By bringing this responsibility here,
we are achieve to have a central point, from where things change, which makes
administration easier.

4.4.4 Implementation

A source code analysis isn't provided here as with other parts of this
project, since this is the place that most things tend to happen and code might
change almost every time. Having in mind the organization of network and
database layer and what is stated in previous paragraphs, one can understand
source code with minimum effort. A diagrams showing various components
needed by this program follows:

4.5 User Remover

4.5.1 Introduction

User remover, “user_remover.rb” with source code listed in section
6.8, is responsible for removing current users from system. This might occur for
various different reasons such as: user decides to leave and informs for his/her
intentions by using a log-off web page. Or maybe perhaps removal might occur by
default after a ten minute inactivity. At this project it is only being used after an
end of a Dhcp lease.

Source code of this program is deprived from dhcp_handler.rb and
could have easily be a small function/class inside it. Reasons for this autonomy
have to do with different conditions or triggers that might end to a user removal.
Example processes responsible for accounting may remove a user after an
inactivity period, as stated in previous paragraph. That's why this program is also
tolerant in many conditions: A user removed by an accounting process will soon
has his/her dhcp lease expired, so this program will be called twice for the same
user. In that case only an error message will be shown.

4.5.2 Correct Syntax

Program may be called by one of the two following syntaxes:

user_remover -i ip_to_remove [reason]

or

user_remover -u username_to_remove [reason]

where the '-i' switch dictates that removal will be done based on user's IP
address which must follow, while '-u' switch dictates that user removal will be
done using user name, which must also follow. A reason might be supplied
optionally, in case of tracking/logging facilities need it. Now no process is
implemented to handle the 'reason' field, but is presented here in order to help
future additions.

4.5.3 Implementation

Program begins executing at line 200 (beginning of main function),
where first thing done is check of correct syntax. If there is a problem then help
message similar with the previous paragraph is shown to user (line 45). In case of
correct syntax constants are assigned (lines 20-37), from local database. Having
everything in place an object to handle the removal is initialized (line 299),
appropriate method called (line 230), and a destructor (line 231) before exit.

So everything is being done by an object of Client Remover class. In
initialization (lines 65-76) a connection is made with local database so that sanity
of input will be checked. What is desired is to extract an IP address – MAC
address pair based either on an IP address or user name (provided when
executing). Decision on which method will be followed is made in line 78. In case
of IP address we want also user's class (authenticated or not) because rules will
be removed from firewall depending on user-class. On the other hand if user
name is supplied, it's sure we have to cope with an authenticated user hence
class is considered known. Either case class is assigned in a constant value.
These functions are performed in line 128.

After correct assignment of values, user is being removed where
records are kept concerning him/her: local database (line 92) and iptables rule
set (line 107).

4.6 CGI scripts

4.6.1 login page

4.6.1.1 Introduction

We have reached the point where a user is prompted with a login
screen where the user name and password pair must be supplied so that local-
ADs resources may be used. A screen-shot of this operation is illustrated in
section 4.1, while source code, which is written in Ruby, is located at section 6.6.
This point can be reached either by the proxy process described before, which will
point a user here, or by a bookmark – manually, from the browser directly. This
script generates html output, based on user's current status: a formal login page
is displayed in case where everything seems to be normal, while an error page is
shown otherwise. Something that must be mentioned is that the length of the
source code is not related to it's complexity because of inclusion of a lengthy
implementation of the MD5 algorithm, which is used as a “black box”, concerning
our project.

4.6.1.2 Implementation

First of all we are in an area where many attacks are possible to occur
during normal operation. According to secure programming guidelines, it is
important not to supply any information to users concerning malfunctions as well
as errors. So when a failure occurs user receives a “Server Error” web page. On
the other hand valuable debugging information is stored in log files of http server
(which is Apache at this implementation).

After loading the libraries needed (lines 16,17) and some constant
values initialization (lines 19 to 28), an attempt to query the local database is
made (line 30). What is requested is information about the specific IP address of
cgi client. If it belongs to a local AD's user then a result is returned (else there is
no result from the database server), also if this single IP address belongs to a
non-authenticated user, user name field (line 42) should be null. This is the case
where a proper login page should be displayed, so a “flag” constant is informed

(line 49, flag variable is set to “down” status). When at least one of the previous
conditions is not matched, this error variable-flag is set to “up” value.

From this point through the end, things are pretty straightforward: if a
problem has been spotted up to now (line 54) then (line 55) a web page is
presented informing about it (html page, lines 64 to 93). Else (line 96) user is
prompted with a log-in screen, requested to get on with the process.

As stated before, we want from users to supply an MD5 hash of the
concatenation of their personal password with a fixed for each session time-
stamp. Everything must be contained in the log-in page. So having retrieved the
time-stamp at line 38, the following are supplied: a javascript based
implementation of the MD5 algorithm (lines 107 to 367) and time-stamp (line
426). Also where the information will be sent to (login-cgi.rb) as we can see in the
following part of this document, is supplied in line 401. Before data flow into
target, password field is of course eliminated, while time-stamp is also re-
transmitted as a token of “good will” from the user.

4.6.2 login cgi

4.6.2.1 Introduction

Along with “dhcp handler” this script is one of the most important
parts of this project. The reason why has to do with it's functionality which will
grow in importance as the project expands. From here connections will be
initiated with other Administrative Domains in order to exchange information
about each local AD and the guest users that want to use it.

Source code is in sector 6.7. When program starts some constant
values are initialized. Then user must pass two “tests”. The former one is to
supply the same timestamp that was assigned to the user. The idea behind this
action is that the user must be originated from a page generated by login page
script (previous sector). The latter “test” has of course to do with correct
password. So the original password is loaded in plain text form from local
database and then it is combined with the timestamp before hashed with the
MD5 algorithm. Of course this hash must be the same with the hash supplied by
user. If all these finish properly, local database will be informed for new user's
status and privileges, while user will be informed for the result before being re-
directed to his/her original destination.

Again here, as before users will not be informed in case of suspicious
failure, but a “Server Error” page will be shown instead. In case of more innocent
errors such as wrong password, an explanatory screen is shown instead.

4.6.2.2 Implementation

Program's main function begins at line 370 (actually with a comment
that informs us about it), having constant definition as the first action (line 347),
which calls a function defined between the 7th and 22th line of the program. What
follows is some more object-variable initializations, such as and MD5 hash (line
379) which will re-calculate user's input in order to compare it against the one
supplied, assignment of user's timestamp into STAMP value (line 381), and an
input parser (line 386).

Input parser is declared and populated with code between lines 194
and 263. This class is responsible for checking input provided by users and
assigns values to appropriate variables. This is the point where this CGI gets
data “from the rest of the world” and is also the point from where most attacks
against the whole system might occur. So most checks should be placed here.
Now user supplied data are checked for “sanity”, for example correct size and
hexadecimal characters for MD5 password. Results are returned in main, lines
388 to 391 (username, password, timestamp).

In line 397 is where a correct MD5 is constructed in order to be
compared against the one supplied by user. Now local database is being queried
in order to get a plain text password. But in future implementations this is the
place where user's remote AD must be contacted and have a form of the password
retrieved by it.

A correct log-in handler is initialized in case that it will be needed later
on (line 401), but nothing is being done with it right now (only resource
allocation). Objects of this class are responsible for: (1) Updating local database:
Where user name is null (default value), authenticated user's name should be
placed etc, and (2) Inform Dhcp handler, by inserting IP into Authenticated Table,
so that this process will elevate user's privileges (local and Internet access).

At last two checks (one for timestamp and one for correct MD5 hash),
are being made in line 403. In case of correctness, log-in handler object is being
asked to perform actions described in previous paragraph, and an appropriate
screen is being shown. If at least one check fails user an “error” web page is
shown instead.

In case of correct log-in code in lines 29-101 is being executed. Some
other functions, except plain html code, are the following: A different message is
printed to user depending on his/her AD. We have two cases here, local and
remote (lines 49-54). Also user's original destination (called “final” here), is being
loaded from database (line 82), while user will be redirected there after a short
time period which is needed in order to update user's privileges.

4.7 Initialization � Termination script

4.7.1 Introduction

After describing various components, the final one is the script that
will start up Dhcp handler and setup firewall rules (default behavior, custom
chain definition). One other process that must be also initiated is the Proxy one,
but this is done by Dhcp handler, creating a sequence/hierarchy.

Since we are in Linux environment (Unix System V if being more
specific), it's standards are to be followed. Code for this object is at section 6.10.

4.7.2 Overview

A script named “init_dawn.sh” is placed in /etc/rc.d/init.d directory,
where scripts responsible for starting and stopping daemons are stored. Two
links are created pointing to this file in the appropriate run level directory. In this
case dawn should run on run level 3 (Multiuser with network support) so target
directory is /etc/rc.d/rc3.d .

First symbolic link named “S99dawn” points to
/etc/rc.d/init.d/init_dawn.sh and means Start (reason for 'S' letter), with
priority 99 (lowest) where this link points. When daemons are called, target script
is called with the word “start” as the first parameter so at boot time the command

 /etc/rc.d/init.d/init_dawn.sh start
is issued.

Priority is the lowest one available, because we want other daemons to
be already up and running, such as the MySQL database. If an attempt is made
to start dawn before MySQL, for example, an error will occur.

The same fashion is being followed with the halting procedures, which
occur before shutdown or reboot. A symbolic link named “K99dawn” is placed in
the same directory for the same reasons. Semantics are the same, where 'K'
means “kill”. Command issued is the same as before with “kill” instead of “start”,
so it's the following one:

 /etc/rc.d/init.d/init_dawn.sh kill
Script interprets the first argument given and acts accordingly as

described in the following sector.

4.7.3 Implementation

As we can see in line 42 command line arguments are interpreted with
a case statement, according to the situation. If we need to “start” then function
start_dawn (line 20) is called: Pid-file is deleted and a new empty one is created.
Here process ID of dhcp_handler will be stored (lines 24-25). With this
information the program will be terminated as we will see later on. Rules for
iptables are loaded (line 27) and dhcp_handler is run by using nohup program
(which traps all stop signals) and therefore makes it run as a daemon process
(line 29).

If the desired action is to “stop” then stop_dawn function is called (line
33). Here process ID is read from pid-file and process is killed. What must be
reminded is that dhcp handler which will be killed, is also responsible for
stopping the connection Proxy, while first thing done by that program is to write
it's process ID into the appropriate file.

Locations of files used here follow well-known Linux semantics
concerning filenames as well as locations or data stored in files. For example if we
look at files under /var/log directory we will see only process Ids of relative with
the filename daemons.

5.0 Installation procedure

Version 1.0 comes in .tgz format (created with tar and then gzipped).
After extraction the following directory structure is created:

In dawn_v1 directory lies the installation script (Section 6.12) which will place
files in appropriate directories. Most files are stored under /usr/local directory
where additional programs are installed in Linux systems. Directory structure
there is the following one:

Contents of each directory:

bin: All executables are placed here.
doc: Documentation, this document.
var: what can't be placed in other directories, for example source code for Java
Proxy
additional components: Objects needed by dawn (Ruby language and Ruby-
MySQL interface)
initialization files: placed here for future reference.

Two directories in original tar file aren't here:
to-cgi-bin: because cgi scripts of this project are placed in cgi scripts location
to-init.d: for the same reason as above but with initialization files.

6.0 Source Code

6.1 prepare_iptables.sh

 1 #!/bin/bash
 2
 3 ##
 4 # Script resonsible for setting up firewalling rules #
 5 # in order to understand the whole sceme see documentation #
 6 #--#
 7 # Dimitris Mistriotis <besieger@yahoo.com> #
 8 ##
 9
 10 #Constants definitions
 11 client_interface=eth1
 12 inet_interface=eth0
 13 our_proxy_port=1003
 14
 15 #filename locations:
 16 DEPMOD=/sbin/depmod
 17 INSMOD=/sbin/insmod
 18 IPTABLES=/sbin/iptables
 19
 20 echo " Inernet Interface: $inet_interface"
 21 echo " Interface clients use: $client_interface"
 22 echo " - Verifying that all kernel modules are ok"
 23 /sbin/depmod Â-a
 24 echo -en "ip_tables, "
 25 $INSMOD ip_tables
 26 echo -en "ip_conntrack, "
 27 $INSMOD ip_conntrack
 28 echo -en "ip_conntrack_ftp, "
 29 $INSMOD ip_conntrack_ftp
 30 echo -en "ip_conntrack_irc, "
 31 $INSMOD ip_conntrack_irc
 32 echo -en "iptable_nat, "
 33 $INSMOD iptable_nat
 34 echo -en "ip_nat_ftp, "
 35 $INSMOD ip_nat_ftp
 36 echo ". Done loading modules."
 37 echo " enabling forwarding.."
 38 echo "1" > /proc/sys/net/ipv4/ip_forward
 39 echo " enabling DynamicAddr.."
 40 echo "1" > /proc/sys/net/ipv4/ip_dynaddr
 41
 42 #make new chains
 43 $IPTABLES -t filter -N default_input #make default-INPUT chain (for the
client_interface)
 44 $IPTABLES -t filter -N default_forward
 45 $IPTABLES -t filter -N newcomer_input
 46 $IPTABLES -t filter -N newcomer_forward
 47 $IPTABLES -t nat -N newcomer_prerouting
 48 $IPTABLES -t filter -N authenticated_input
 49 $IPTABLES -t filter -N authenticated_forward
 50
 51
 52 #newcomer_input chain inserting rules in a stack-like fashion (LIFO)
 53 $IPTABLES -t filter -I newcomer_input -j DROP

 54 $IPTABLES -t filter -I newcomer_input -i $client_interface -p icmp -j
DROP
 55 $IPTABLES -t filter -I newcomer_input -i $client_interface -p udp --
dport \! 53 -j DROP
 56 $IPTABLES -t filter -I newcomer_input -i $client_interface -p udp --
dport 53 -j ACCEPT
 57 #53 udp, name server port
 58 $IPTABLES -t filter -I newcomer_input -i $client_interface -p tcp --
dport \! 80 -j DROP
 59 $IPTABLES -t filter -I newcomer_input -i $client_interface -p tcp --
dport 80 -j ACCEPT
 60 $IPTABLES -t filter -I newcomer_input -i $client_interface -p tcp --
dport 8008 -j ACCEPT
 61 $IPTABLES -t filter -I newcomer_input -i $client_interface -p tcp --
dport 1003 -j ACCEPT
 62 #change it to variable if this can be done :-)
 63
 64 #newcomer_forward chain which is far more simpler
 65 #(no forwarding allowed except web which will be altered at the nat
talbe)
 66 $IPTABLES -t filter -I newcomer_forward -i $client_interface -j DROP
 67 $IPTABLES -t filter -I newcomer_forward -i $client_interface -p tcp --
dport 80 -j ACCEPT
 68
 69 #remove it after testing
 70 $IPTABLES -t filter -I newcomer_forward -i $client_interface -p udp --
dport 53 -j ACCEPT
 71
 72 #newcomer_prerouting (nat table)
 73 #iptables -t nat -I newcomer_prerouting -i $client_interface -p tcp --
destination \! 192.168.0.1 --dport \! 80 -j DNAT --to-destination
192.168.0.1:$our_proxy_port
 74 $IPTABLES -t nat -I newcomer_prerouting -i $client_interface -p tcp --
destination \! 192.168.0.1 -j DNAT --to-destination 192.168.0.1:1003
 75 #iptables -t nat -I newcomer_prerouting -i $client_interface -p tcp --
dport \! 80 -j DNAT --to-destination 192.168.0.1:1003
 76
 77
 78
 79 #authenticated_input chain
 80 #$IPTABLES -t filter -I authenticated_input -j DROP
 81 $IPTABLES -t filter -I authenticated_input -i $client_interface -j
ACCEPT
 82 #allow everything
 83
 84 #default_input chain
 85 #allow _only_ dhcp requests
 86 $IPTABLES -t filter -I default_input -j DROP
 87 $IPTABLES -t filter -I default_input -i $client_interface -p udp --sport
68 --dport 67 -j ACCEPT
 88 #default_forward chain
 89 $IPTABLES -t filter -I default_forward -i $client_interface -j DROP
 90
 91
 92 #newcomer_forward chain
 93 $IPTABLES -t filter -I newcomer_forward -i $client_interface -j DROP
 94 #everything is dropped for everybody :-)
 95
 96
 97
 98 #make obligatory jump to this chain for users of $client_interface
 99 #in input and forward chains
 100 $IPTABLES -t filter -I INPUT -i $client_interface -j default_input

 101 $IPTABLES -t filter -I FORWARD -i $client_interface -j default_forward
 102 #Enabling SNAT (MASQUERADE) functionality on $inet_interface
 103 $IPTABLES -t nat -A POSTROUTING -o $inet_interface -j MASQUERADE
 104
 105
 106
 107 echo " FWD: Allow all connections OUT and only existing and related ones
IN"
 108 $IPTABLES -A FORWARD -i $inet_interface -o $client_interface -m state --
state ESTABLISHED,RELATED -j ACCEPT
 109
 110 $IPTABLES -A authenticated_forward -i $client_interface -o
$inet_interface -j ACCEPT

6.2 dhcp_clients.sql

This file was constructed by MySQL-dump utility, supplied with MySQL database
package.

 1 -- MySQL dump 8.22
 2 --
 3 -- Host: localhost Database: dhcp_clients
 4 ---
 5 -- Server version 3.23.54
 6
 7 --
 8 -- Table structure for table 'Authenticated_IPs'
 9 --
 10
 11 CREATE TABLE Authenticated_IPs (
 12 ip_address char(15) NOT NULL default '',
 13 PRIMARY KEY (ip_address)
 14) TYPE=MyISAM;
 15
 16 --
 17 -- Dumping data for table 'Authenticated_IPs'
 18 --
 19
 20
 21
 22 --
 23 -- Table structure for table 'Current_Clients'
 24 --
 25
 26 CREATE TABLE Current_Clients (
 27 IP_address char(15) NOT NULL default '',
 28 MAC_address char(17) NOT NULL default '',
 29 Username char(8) default NULL,
 30 Domain char(22) default NULL,
 31 User_info char(30) default NULL,
 32 Timestamp timestamp(14) NOT NULL,
 33 PRIMARY KEY (IP_address)
 34) TYPE=MyISAM;
 35
 36 --
 37 -- Dumping data for table 'Current_Clients'
 38 --
 39
 40
 41 INSERT INTO Current_Clients VALUES
('127.0.0.1','','none','none','none',20030328204346);
 42 INSERT INTO Current_Clients VALUES
('192.168.0.1','','none','none','none',20030513141815);
 43
 44 --
 45 -- Table structure for table 'Original_Destination'
 46 --
 47
 48 CREATE TABLE Original_Destination (
 49 ip_address char(15) NOT NULL default '',
 50 web_destination char(200) default NULL,
 51 PRIMARY KEY (ip_address)
 52) TYPE=MyISAM;

 53
 54 --
 55 -- Dumping data for table 'Original_Destination'
 56 --

6.3 local_AD.sql

Also created with MySQL dump utility.

 1 -- MySQL dump 8.22

 2 --
 3 -- Host: localhost Database: local_AD
 4 ---
 5 -- Server version 3.23.54
 6
 7 --
 8 -- Table structure for table 'configuration'
 9 --
 10
 11 CREATE TABLE configuration (
 12 Attribute char(30) NOT NULL default '',
 13 Value char(30) NOT NULL default '',
 14 PRIMARY KEY (Attribute)
 15) TYPE=MyISAM;
 16
 17 --
 18 -- Dumping data for table 'configuration'
 19 --
 20
 21
 22 INSERT INTO configuration VALUES ('wireless_device','eth1');
 23 INSERT INTO configuration VALUES ('proxy_port','1003');
 24 INSERT INTO configuration VALUES ('AD_name','aueb.domain.gr');
 25 INSERT INTO configuration VALUES ('subnet','192.168.0.0');
 26
 27 --
 28 -- Table structure for table 'local_users'
 29 --
 30
 31 CREATE TABLE local_users (
 32 Username char(30) NOT NULL default '',
 33 Password char(15) NOT NULL default '',
 34 PRIMARY KEY (Username)
 35) TYPE=MyISAM;
 36
 37 --
 38 -- Dumping data for table 'local_users'
 39 --
 40
 41
 42 INSERT INTO local_users VALUES
('dimitris@aueb.domain.gr','dimitris1979');
 43 INSERT INTO local_users VALUES ('Helias@aueb.domain.gr','wireless');
 44 INSERT INTO local_users VALUES
('Visitor@another.domain.com','guesthere');
 45

6.4 Grant Tables

 1 ##
 2 # Commands responsible for setting up MySQL GRANT tables #
 3 # using GRANT statements instead of plain insert commands #
 4 #--#
 5 # Dimitris Mistriotis 09 May 03 <besieger@yahoo.com> #
 6 ##
 7
 8 #first one dhcp_handler:
 9 GRANT INSERT ON dhcp_clients.Current_Clients TO dhcp_handler@localhost
IDENTIFIED BY 'dhcp084';
 10 GRANT SELECT,DELETE ON dhcp_clients.Authenticated_IPs TO
dhcp_handler@localhost IDENTIFIED BY 'dhcp084';
 11
 12 #user remover:
 13 GRANT SELECT,DELETE ON dhcp_clients.Current_Clients TO
user_remover@localhost IDENTIFIED BY 'rmv23!';
 14
 15 #The following users connect from CGI-scripts (perfaps can somehow limit
only to that??)
 16
 17 #add authentication information
 18 GRANT INSERT ON dhcp_clients.Authenticated_IPs TO
add_auth_info@localhost IDENTIFIED BY 'adduser437';
 19
 20 #update dhcp information
 21 GRANT SELECT, UPDATE ON dhcp_clients.Current_Clients TO
dhcp_update@localhost IDENTIFIED BY 'update_now';
 22
 23 #read if a client has acquired IP address via dhcp in order to display
login page
 24 GRANT SELECT ON dhcp_clients.Current_Clients TO dhcp_read@localhost
IDENTIFIED BY 'read_now';
 25
 26 #only here privileges are performed outside the dhcp_clients database,
 27 #but on local_AD database where information (now only plain text
passwords) is stored about
 28 #each AD.
 29 GRANT SELECT ON local_AD.local_users TO local_password@localhost
IDENTIFIED BY 'pwd_manager';
 30
 31 #About Original_Destination table:
 32 #user who submits information
 33 GRANT INSERT ON dhcp_clients.Original_Destination TO
submit_web_page@localhost IDENTIFIED BY 'efstath';
 34 GRANT SELECT,DELETE ON dhcp_clients.Original_Destination TO
process_web_page@localhost IDENTIFIED BY 'process_now';
 35
 36 #About Attribure reading
 37 GRANT SELECT ON local_AD.configuration TO attribute_reader@localhost
IDENTIFIED BY 'attribute2003';
 38
 39
 40 #EOF

6.5 Proxy.java

This code has been produced by Helias Eustathiou (efstath@aueb.gr),
on behalf of aiding this project. As we can see from the title, it's he proxy server
response for newcomer user's TCP connections. If the connection has web
attributes, HTML code redirecting to login page is supplied to the user, else a
“banner”-message informing for login processes is supplied.

A web connection is identified by two basic characteristics: (a) browser
sends some data, the desired web page, after TCP initialization, while other
services such as ssh tend to wait for data (“banners”), and (b) these data include
a “Host :” (line 29) string. Proxy tries (line 17) to read data (line 19) and if fails, we
are in a non-web protocol, an error is caught (line 45).

 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.*;

 4
 5 class ProxyThread extends Thread {
 6
 7 Socket s;
 8 String remoteIP;
 9 String getURL;
 10 String host;
 11
 12 ProxyThread(Socket s) {
 13 this.s = s;
 14 }
 15
 16 public void run() {
 17 try {
 18 s.setSoTimeout(500);
 19 BufferedReader br = new BufferedReader(new
InputStreamReader(s.getInputStream()));
 20 DataOutputStream dos = new DataOutputStream(s.getOutputStream());
 21
 22 try {
 23 String line = br.readLine();
 24 remoteIP = s.getInetAddress().getHostAddress();
 25
 26 StringTokenizer st = new StringTokenizer(line);
 27 st.nextToken();
 28 getURL = st.nextToken();
 29 while (line.indexOf("Host: ") == -1) {
 30 line = br.readLine();
 31 }
 32 st = new StringTokenizer(line);
 33 st.nextToken();
 34 host = st.nextToken();
 35 saveToDB();
 36 dos.writeBytes(response() + "\r\n");
 37 s.close();
 38
 39 } catch (InterruptedIOException x) {
 40 dos.writeBytes("Please login to the local AD using your
browser.\r\n");
 41 s.close();
 42
 43 }
 44
 45 } catch (Exception x) {
 46 x.printStackTrace();
 47 }
 48 }
 49
 50 String response() {

 51
 52 String page = "<HTML><HEAD><TITLE>Wait for login page to load</TITLE>" +
 53 "<SCRIPT LANGUAGE=\"JavaScript\"><!--\r\nfunction redirect () { " +
 54 "setTimeout(\"go_now()\",5000); }\r\nfunction go_now () {
window.location.href " +
 55 " = \"http://192.168.0.1/cgi-bin/login-page.rb\"; }\r\n//--
></SCRIPT></HEAD>" +
 56 "<BODY onLoad=\"redirect()\">\r\n<H1>Cannot redirect to login page.
</H1>
<P>" +
 57 "In order to log in your browser must have JavaScript enabled<P>" +
 58 "By reading this page you use a browser without JavaScript
capabilities<P>" +
 59 "(which are necessary to log-in) or you have JavaScript
disabled.<P>" +
 60 "Correct this problem and try again.<P>or inform your local AD's
administrator for help</BODY></HTML>";
 61
 62 return "HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n" + page;
 63
 64 }
 65
 66 void saveToDB() throws Exception {
 67
 68 String command = "mysql -u submit_web_page --password=efstath dhcp_clients "
 +
 69 "-e \"INSERT INTO Original_Destination (ip_address,
web_destination) VALUES " +
 70 "('" + remoteIP + "', 'http://" + host + getURL + "');\"";
 71
 72 long name = System.currentTimeMillis();
 73 FileOutputStream fos = new FileOutputStream("" + name);
 74 byte[] b = command.getBytes();
 75 fos.write(b, 0, b.length);
 76 fos.close();
 77 File f = new File("" + name);
 78 f.delete();
 79
 80 String[] commands = new String[2];
 81 commands[0] = "/bin/sh";
 82 commands[1] = "" + name;
 83 Process p = Runtime.getRuntime().exec(commands);
 84 }
 85
 86 }
 87
 88 class Proxy {
 89
 90 int port;
 91 String ip;
 92
 93 Proxy(int port, String ip) {
 94 this.port = port;
 95 this.ip = ip;
 96 }
 97
 98 void init() throws Exception {
 99
 100 InetAddress ia = InetAddress.getByName(ip);
 101
 102 ServerSocket ss = new ServerSocket(port, 100, ia);
 103
 104 while (true) {
 105 Socket s = ss.accept();
 106 ProxyThread pt = new ProxyThread(s);
 107 pt.start();
 108 }
 109
 110 }
 111
 112 public static void main(String[] args) throws Exception {
 113 int port = Integer.parseInt(args[0]);
 114 String ip = args[1];
 115 Proxy proxy = new Proxy(port, ip);
 116 proxy.init();
 117
 118 }
 119 }

6.6 login-page.rb

 1 #!/usr/local/bin/ruby
 2 # in previous line location of ruby in current (and probably in most
linux) systems
 3 # may differ to yours, 100% sure in BSD installations
 4 =begin
 5 ***
 6 * CGI script responsible for printing *
 7 * a login page to newcomers to local AD *
 8 * output in html format, browser must support *
 9 * javascript in order to interact *
 10 *---*
 11 * Dimitris Mistriotis 2003 (besieger@yahoo.com) *
 12 * *
 13 ***
 14 =end
 15
 16 require "mysql"
 17 require "cgi"
 18
 19 #define constants
 20 Host="localhost"
 21 Username="dhcp_read"
 22 Password="read_now"
 23 DB="dhcp_clients"
 24
 25
 26 $IP = ENV["REMOTE_ADDR"]
 27 $DB_reader = Mysql.new() #quering the database
 28 $DB_reader.connect(host=Host, user=Username, passwd=Password, db=DB)
 29
 30 _result=$DB_reader.query("SELECT Timestamp, Username FROM
Current_Clients WHERE IP_address= \'#{$IP}\'\ ")
 31
 32 #now first we will check the number of results it must be one
 33 #only one user per IP
 34 if (_result.num_rows ==1) then
 35 #check if user already connected
 36 #smash string
 37 _result.each do |row|
 38 $Stamp = row.to_s[/^[\d]{14,14}/]
 39 $Uname = row.to_s.delete($Stamp)
 40 end #each
 41
 42 if ($Uname != "") #if there is a username then an $Uname is an empty
string
 43 then
 44 ERROR_FLAG="UP" #constant assigned only once
 45 else
 46 ERROR_FLAG="DOWN"
 47 end
 48 else
 49 ERROR_FLAG="UP"
 50 end #if
 51
 52
 53 #so ready to show page to user
 54 if (ERROR_FLAG=="UP")
 55 then
 56
 57 # Code to handle what to do if a user has been here dy fault or
maliciously

 58 # should be placed here.
 59
###
 60 # system (ALARM)
 61 #
 62 # ERROR PAGE FOLLOWS
 63 print "Content-type: text/html\r\n\r\n"
 64 print <<EOF
 65 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
 66 <html>
 67 <head>
 68 <meta http-equiv="content-type"
 69 content="text/html; charset=ISO-8859-1">
 70 <title>Login Page -- error</title>
 71 </head>
 72 <body>
 73 <div style="text-align: center;"><big><big>Login
 75 Page</big></big>

 76 </div>
 77 <big
 78 style="color: rgb(255, 0, 0);">

 80 Error alrealy logged in or unknown IP</big>

 81

 82 According to your IP you have

 83 1. Alreaddy logged in and you are here by accident-error

 84 or

 85 2. You are probing- trying to access this system and you really should
 86 do

 87 something else...

 88

 89

 91
 92 </body>
 93 </html>

 94 EOF
 95
 96 else
 97 # LOGIN PAGE FOLLOWS part1
 98 print "Content-type: text/html\r\n\r\n"
 99 print <<EOF
 100 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
 101 <html>
 102 <head>
 103 <title>Login Page - Welcome</title>
 104
 105 </head>
 106
 107 <script language="JavaScript" >
 108
 109 /*
 110 * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
 111 * Digest Algorithm, as defined in RFC 1321.
 112 * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002.
 113 * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
 114 * Distributed under the BSD License
 115 * See http://pajhome.org.uk/crypt/md5 for more info.
 116 */
 117
 118 /*
 119 * Configurable variables. You may need to tweak these to be compatible with
 120 * the server-side, but the defaults work in most cases.
 121 */
 122 var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
 123 var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
 124 var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */
 125
 126 /*
 127 * These are the functions you'll usually want to call
 128 * They take string arguments and return either hex or base-64 encoded strings
 129 */
 130 function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));}
 131 function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));}
 132 function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));}
 133 function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); }

 134 function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); }
 135 function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); }
 136
 137 /*
 138 * Perform a simple self-test to see if the VM is working
 139 */
 140 function md5_vm_test()
 141 {
 142 return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72";
 143 }
 144
 145 /*
 146 * Calculate the MD5 of an array of little-endian words, and a bit length
 147 */
 148 function core_md5(x, len)
 149 {
 150 /* append padding */
 151 x[len >> 5] |= 0x80 << ((len) % 32);
 152 x[(((len + 64) >>> 9) << 4) + 14] = len;
 153
 154 var a = 1732584193;
 155 var b = -271733879;
 156 var c = -1732584194;
 157 var d = 271733878;
 158
 159 for(var i = 0; i < x.length; i += 16)
 160 {
 161 var olda = a;
 162 var oldb = b;
 163 var oldc = c;
 164 var oldd = d;
 165
 166 a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);
 167 d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);
 168 c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819);
 169 b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
 170 a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);
 171 d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426);
 172 c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);
 173 b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);
 174 a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416);
 175 d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);
 176 c = md5_ff(c, d, a, b, x[i+10], 17, -42063);
 177 b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);
 178 a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682);
 179 d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
 180 c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);
 181 b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329);
 182
 183 a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);
 184 d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);
 185 c = md5_gg(c, d, a, b, x[i+11], 14, 643717713);
 186 b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);
 187 a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);
 188 d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083);
 189 c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);
 190 b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
 191 a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438);
 192 d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);
 193 c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);
 194 b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501);
 195 a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);
 196 d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);
 197 c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473);
 198 b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);
 199
 200 a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
 201 d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
 202 c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562);
 203 b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);
 204 a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);
 205 d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353);
 206 c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);
 207 b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);
 208 a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174);
 209 d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);
 210 c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);
 211 b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189);
 212 a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);
 213 d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);
 214 c = md5_hh(c, d, a, b, x[i+15], 16, 530742520);
 215 b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);
 216
 217 a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);
 218 d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415);
 219 c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);
 220 b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);
 221 a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571);
 222 d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
 223 c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);

 224 b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);
 225 a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359);
 226 d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);
 227 c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);
 228 b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649);
 229 a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);
 230 d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);
 231 c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259);
 232 b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);
 233
 234 a = safe_add(a, olda);
 235 b = safe_add(b, oldb);
 236 c = safe_add(c, oldc);
 237 d = safe_add(d, oldd);
 238 }
 239 return Array(a, b, c, d);
 240
 241 }
 242
 243 /*
 244 * These functions implement the four basic operations the algorithm uses.
 245 */
 246 function md5_cmn(q, a, b, x, s, t)
 247 {
 248 return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b);
 249 }
 250 function md5_ff(a, b, c, d, x, s, t)
 251 {
 252 return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t);
 253 }
 254 function md5_gg(a, b, c, d, x, s, t)
 255 {
 256 return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t);
 257 }
 258 function md5_hh(a, b, c, d, x, s, t)
 259 {
 260 return md5_cmn(b ^ c ^ d, a, b, x, s, t);
 261 }
 262 function md5_ii(a, b, c, d, x, s, t)
 263 {
 264 return md5_cmn(c ^ (b | (~d)), a, b, x, s, t);
 265 }
 266
 267 /*
 268 * Calculate the HMAC-MD5, of a key and some data
 269 */
 270 function core_hmac_md5(key, data)
 271 {
 272 var bkey = str2binl(key);
 273 if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz);
 274
 275 var ipad = Array(16), opad = Array(16);
 276 for(var i = 0; i < 16; i++)
 277 {
 278 ipad[i] = bkey[i] ^ 0x36363636;
 279 opad[i] = bkey[i] ^ 0x5C5C5C5C;
 280 }
 281
 282 var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz);
 283 return core_md5(opad.concat(hash), 512 + 128);
 284 }
 285
 286 /*
 287 * Add integers, wrapping at 2^32. This uses 16-bit operations internally
 288 * to work around bugs in some JS interpreters.
 289 */
 290 function safe_add(x, y)
 291 {
 292 var lsw = (x & 0xFFFF) + (y & 0xFFFF);
 293 var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
 294 return (msw << 16) | (lsw & 0xFFFF);
 295 }
 296
 297 /*
 298 * Bitwise rotate a 32-bit number to the left.
 299 */
 300 function bit_rol(num, cnt)
 301 {
 302 return (num << cnt) | (num >>> (32 - cnt));
 303 }
 304
 305 /*
 306 * Convert a string to an array of little-endian words
 307 * If chrsz is ASCII, characters >255 have their hi-byte silently ignored.
 308 */
 309 function str2binl(str)
 310 {
 311 var bin = Array();
 312 var mask = (1 << chrsz) - 1;
 313 for(var i = 0; i < str.length * chrsz; i += chrsz)

 314 bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32);
 315 return bin;
 316 }
 317
 318 /*
 319 * Convert an array of little-endian words to a string
 320 */
 321 function binl2str(bin)
 322 {
 323 var str = "";
 324 var mask = (1 << chrsz) - 1;
 325 for(var i = 0; i < bin.length * 32; i += chrsz)
 326 str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask);
 327 return str;
 328 }
 329
 330 /*
 331 * Convert an array of little-endian words to a hex string.
 332 */
 333 function binl2hex(binarray)
 334 {
 335 var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
 336 var str = "";
 337 for(var i = 0; i < binarray.length * 4; i++)
 338 {
 339 str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) +
 340 hex_tab.charAt((binarray[i>>2] >> ((i%4)*8)) & 0xF);
 341 }
 342 return str;
 343 }
 344
 345 /*
 346 * Convert an array of little-endian words to a base-64 string
 347 */
 348 function binl2b64(binarray)
 349 {
 350 var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 351 var str = "";
 352 for(var i = 0; i < binarray.length * 4; i += 3)
 353 {
 354 var triplet = (((binarray[i >> 2] >> 8 * (i %4)) & 0xFF) << 16)
 355 | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8)
 356 | ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF);
 357 for(var j = 0; j < 4; j++)
 358 {
 359 if(i * 8 + j * 6 > binarray.length * 32) str += b64pad;
 360 else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
 361 }
 362 }
 363 return str;
 364 }
 365
 366
 367 </script>

 368
 369
 370
 371 <body bgcolor="#cccccc" link="#000080" vlink="#6060c0" text="#000000"
 372 alink="#000099">
 373
 374 <div align="left">
 375 <center>
 376 Welcome
 377 to local AD's login-page.

 378 Please supply your <u>username</u> and <u>password</u> provided to you
 379 by your local AD administrator.

 380 Username in user@remote.database.server format.

 381 </center>
 382

 383
 384 <center></center>
 385 </div>
 386
 387 <center>

 388
 389 <table border="1" bgcolor="blue" cellspacing="0" cellpadding="0"
 390 align="center">
 391 <tbody>
 392 <tr>
 393 <td>
 394
 395 <table border="0" width="100%" cellspacing="2" cellpadding="5">

 396 <tbody>
 397 <tr>
 398 <td bgcolor="white">
 399
 400 <form name="auth_form"
 401 action="http://192.168.0.1/cgi-bin/login-cgi.rb" method="post">
 402
 403
 404 <table>
 405 <tbody>
 406 <tr>
 407 <td bgcolor="white"> Username </td>
 408 <td bgcolor="white"> <input type="text"
 409 size="40" name="username" value=""> </td>
 410 </tr>
 411
 412
 413
 414 </tbody><tbody>
 415 <tr>
 416 <td bgcolor="white"> Password </td>
 417 <td bgcolor="white"> <input type="password"
 418 size="40" name="msg" value=""> </td>
 419 <!-- msg=message to be encrypted--> </tr>
 420
 421 EOF
 422
 423 ##
 424 # print stamp here and then the rest of the page follows #
 425 ##
 426 print "<input type=\"hidden\" size=\"40\" name=\"timestamp\"
value=\"#{$Stamp}\">"
 427
 428 print <<EOF
 429 <input name="password" size="40" type="hidden">
 430
 431 </tbody>
 432
 433 </table>
 434
 435
 436 <center> <input type="submit" value="Submit"
 437 onclick="password.value = hex_md5(msg.value + timestamp.value); msg.value =
'';"></center>
 438 </form>
 439 </td>
 440 </tr>
 441
 442
 443 </tbody>
 444 </table>
 445 </td>
 446 </tr>
 447
 448 </tbody>
 449 </table>
 450
 451 <p> <!--
 452 Source code of this page is a clone of the ideas/pages created by
 453 Paul Johnston (1998 - 2002), distributed under the BSD License
 454 I'd like to thank him for inspiration
 455 -->
 456 </p>
 457 </center>
 458

 459
 460 </body>
 461 </html>
 462

 463 EOF

 464

 465 end #if

6.7 login-cgi.rb

 1 #!/usr/local/bin/ruby
 2 require 'cgi'
 3 require "mysql"
 4 require 'digest/md5'
 5
 6
 7 assign_constants = proc {
 8 begin
 9 _constants_db = Mysql.new()
 10 _constants_db.connect(host="localhost", user="attribute_reader",
password = "attribute2003", db="local_AD")
 11 _consants_results = _constants_db.query ("SELECT * FROM
configuration");
 12 _constants_db.close
 13 rescue MysqlError => connect_db_error
 14 print "Problem during constant values assigment,
exiting\n"
 15 print "Error number: #{connect_db_error.errno}. , Error
message: #{connect_db_error.error } \n"
 16 exit(3)
 17 end
 18 _consants_results.each_hash do |row|
 19 case row["Attribute"]
 20 when "AD_name"
 21 AD_name = row["Value"]
 22 end #case
 23 end #do
 24 }
 25 #a Class which swows a correct-login page and redirects to webpage
 26 #user wanted originally to visit
 27 class Show_correct_log_in
 28
 29 #db constants:
 30 User_Page_Host = "localhost"
 31 User_Page_Username = "process_web_page"
 32 User_Page_Password = "process_now"
 33 User_Page_Database = "dhcp_clients"
 34 User_Page_Table = "Original_Destination"
 35
 36 def initialize(user_ip, username)
 37
 38 print "Content-type: text/html\r\n\r\n"
 39 print <<EOF
 40 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 41 <html><head>
 42 <meta http-equiv="content-type" content="text/html; charset=ISO-8859-
1">
 43 <title>Correct Login</title></head>
 44 <body>
 45

 46 You've logged in <span style="text-decoration:
underline;">correctly and you can now use #{AD_name}'s
services.

 47 EOF
 48
 49 #if username ends in @AD_name then it's a local else it is a guest
 50 if (username[(username.index('@') +1)..username.size] == AD_name) then
 51 print "
You are a user originating from current AD
"
 52 else
 53 print "
You are a guest user
"
 54 end #if

 55
 56 final_destination = get_original_page(user_ip)
 57 if (final_destination == nil) then
 58 #redirect user to a predifined homepage
 59 print <<EOF
 60 redirecting you to our homepage

 61 <SCRIPT LANGUAGE="JavaScript"><!--
 62 function redirect () { setTimeout("go_now()",5000); }
 63 function go_now () { window.location.href = "http://192.168.0.1"; }
 64 EOF
 65 else
 66 print "your ip address is: #{user_ip}
"
 67 print "you will be re-directed to: #{final_destination} in five
seconds
"
 68 print <<EOF
 69 <SCRIPT LANGUAGE="JavaScript"><!--
 70 function redirect () { setTimeout("go_now()",5000); }
 71 EOF
 72 print "function go_now () { window.location.href =
\"#{final_destination}\"; }\n"
 73 end #if
 74 print <<EOF
 75 //--></SCRIPT>
 76 <BODY onLoad="redirect()">
 77 </body></html>
 78 EOF
 79
 80 end #initialize
 81
 82 def get_original_page(ip_to_query)
 83 #connect to database and retrieve destination
 84 @web_db = Mysql.new()
 85 @web_db.connect(host=User_Page_Host, user=User_Page_Username,
passwd=User_Page_Password, db=User_Page_Database)
 86 @web_destination_query_result = @web_db.query("SELECT web_destination
FROM #{User_Page_Table} WHERE ip_address=\'#{ip_to_query}\'");
 87 #now the information can be deleted so that space will be left for
next one
 88 @web_db.query("DELETE FROM #{User_Page_Table} WHERE
ip_address=\'#{ip_to_query}\'");
 89 #and memory can be fred
 90 @web_db.close
 91 #now the single header can be un-wrapped from result object and passed
back to calling method
 92 if (@web_destination_query_result.num_rows == 0) then
 93 @result_page = nil
 94 else
 95 @result_page = @web_destination_query_result.fetch_row[0].to_s
#there can be only one row
 96 end #if
 97 @web_destination_query_result.free #finished also with result
 98 _return = @result_page
 99 end #get_original_page
 100
 101 end #Show_correct_log_in
 102
 103 class Error_exit
 104 #get an error code, present an error-page and do actions
 105 #appropriate i.e. log or just exit or alarm
 106
 107 def initialize (error_code)
 108 print "Content-type: text/html\r\n\r\n"
 109 print <<EOF

 110 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 111 <html><head> <meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
 112 <title>Login Error</title></head>
 113 <body>
 114 <div style="text-align: center; font-weight: bold;"><big
 115 style="font-weight: normal;"><span style="color: rgb(255, 0,
0);">ERROR</big>

 116 </div>
 117
You might see this page for the following reasons:

 118 You've entered incorrect
 119 password, or

 120 You've used a cached
 121 version of the login page, while you should download a new one,
 122 or

 123 You are feeding the login sceme with random or malicious data
(cross side scripting)

 125

 126 You should try to fix these problems, contact support for more
 127 information.

 128

 129 </body> </html>
 130 EOF
 131
 132 #actions according to error code
 133 case error_code
 134 when 1,2,3
 135 exit(error_code)
 136 end #case
 137 end #initialize
 138 end #Error_exit
 139
 140 class Correct_Loggon_handler
 141 #an object of this class is responsible for the following
 142 #a. update user log-on information
 143 # (update local database, where user==NULL now user = user supplied
name)
 144 #b. change access rights to the system
 145 #c. execute a "trigger" call if needed
 146 #because of security reasons this class may be initialized at the very
beginning
 147 #but the initializer must do nothing, the work must be done by functions
later on
 148 Dhcp_Host = "localhost" #some constants
 149 Dhcp_DB = "dhcp_clients"
 150 Dhcp_Username = "dhcp_update"
 151 Dhcp_Password = "update_now"
 152 Auth_Username = "add_auth_info"
 153 Auth_Password = "adduser437"
 154 Auth_Table = "Authenticated_IPs"
 155
 156 def initialize(ip_address, username)
 157 @canditate_IP = ip_address #caditate because we don't know if all are
Ok
 158 @candiatate_user = username #during init process
 159 @db_handler = Mysql.new() #but again don't connect yet
 160 end #initialize
 161
 162 def unlock_user()
 163 #does three tasks: updates user database, "unlocks IP" and
 164 # pulls a trigger _if_ needed

 165 update_database()
 166 unlock_IP()
 167 end #unlock_user
 168
 169 def update_database()
 170 #according to what is implemented in mySQL tables
 171 _at_position = @candiatate_user.index('@')
 172 login = @candiatate_user[0..(_at_position-1)]
 173 domain = @candiatate_user[(_at_position+1)..@candiatate_user.size]
#the rest of it
 174 @db_handler.connect(host=Dhcp_Host, user=Dhcp_Username,
passwd=Dhcp_Password, db=Dhcp_DB)
 175 @db_handler.query ("UPDATE Current_Clients SET Username =
\'#{login}\', Domain = \'#{domain}\', User_info = \'#{@candiatate_user}\' WHERE
IP_address = \'#{@canditate_IP}\' LIMIT 1")
 176 #only one IP address will be updated and therefore LIMIT's role
 177 @db_handler.close #no more needed
 178 end #update_database()
 179
 180 def unlock_IP()
 181 #insert this ip into Authenticated_IP table in local database
 182 #so that it will be processed by the appropriate program
 183 _auth_handler = Mysql.new()
 184 _auth_handler.connect(host=Dhcp_Host, user=Auth_Username,
passwd=Auth_Password, db=Dhcp_DB)
 185 _auth_handler.query ("INSERT INTO #{Auth_Table} (ip_address) VALUES
(\'#{@canditate_IP}\')")
 186 #if this fails the program might fail also
 187 _auth_handler.close
 188 end #unlock_IP()
 189
 190 private :update_database
 191 private :unlock_IP
 192 end #Correct_Loggon_handler
 193
 194 class Input_parser
 195 def initialize()
 196 @form_parser=CGI::new
 197 #a parser should check character-by character the input as a string
 198 #before proceeding in order to see if "illegal" characters are present
 199 #illegal = not legal (not in the set of those needed)
 200 #then a good r.e. check would help
 201 #this stuff is here ommited in order to do more work in the script
 202
 203 #set username:
 204 data = @form_parser['username'].to_s #.dump
 205 if (ok_username(data) == true) then
 206 @username = data
 207 else Error_exit.new(2)
 208 end #if (username check)
 209 #set hashed_password:
 210 data = @form_parser['password'].to_s #.dump
 211 if (ok_hashed_password(data) == true) then
 212 @hashed_password = data
 213 else Error_exit.new(2)
 214 end #if (password check)
 215 #set timestamp:
 216 data = @form_parser['timestamp'].to_s #.dump
 217 if (ok_timestamp(data) == true) then
 218 @timestamp = data
 219 else Error_exit.new(2)
 220 end #if (timestamp check)
 221

 222 end #initialize
 223
 224 def ok_username(string_to_check)
 225 if ((string_to_check =~ /[\w]+[@]([\w]+.)+[\w]+/) and
(string_to_check.size <=30))
 226 then
 227 result = true
 228 else result = false end
 229 end #ok_username
 230
 231 def ok_hashed_password(string_to_check)
 232 #password is an md5 encrypted hash so it consists of 32 hex characters
 233 #a-f letters in hex are in lowcase
 234 if (string_to_check =~ /[\da-f]{32,32}/)
 235 then
 236 result = true
 237 else result = false end
 238 end #ok_hashed_password
 239
 240 def ok_timestamp(string_to_check)
 241 #timestamp consists of 14 digits in this sceme
 242 if (string_to_check =~ /[\d]{14,14}/)
 243 then
 244 result = true
 245 else result = false end
 246 end #ok_timestamp
 247
 248 def get_username()
 249 result = @username
 250 end #get_username
 251
 252 def get_hashed_password()
 253 result = @hashed_password
 254 end #get_password
 255
 256 def get_timestamp()
 257 result = @timestamp
 258 end
 259
 260 private :ok_username
 261 private :ok_hashed_password
 262 private :ok_timestamp
 263 end #Input_parser
 264
 265
 266 #two links will be established here: one for acquiring the timestamp
 267 #in order to check it with the password as well as to evaluate
 268 #it with the one sent by the login-page
 269
 270 #Creating a wrapper for the dhcp clients database
 271 class Timestamp_dbwrapper
 272 #define constants
 273 Timestamp_Host="localhost"
 274 Timestamp_Username="dhcp_read"
 275 Timestamp_Password="read_now"
 276 Timestamp_DB="dhcp_clients"
 277
 278 def initialize(ip_tosearch)
 279 @Timestamp_reader = Mysql.new()
 280 @Timestamp_reader.connect(host=Timestamp_Host,
user=Timestamp_Username, passwd=Timestamp_Password, db=Timestamp_DB)
 281 @result_Timestamp=@Timestamp_reader.query("SELECT Timestamp FROM
Current_Clients WHERE IP_address= \'#{ip_tosearch}\'")

 282 end #initialize
 283
 284 def return_timestamp()
 285 if (check_result() == "ok")
 286 then
 287 stamp = @result_Timestamp.fetch_row[0]
 288 else
 289 stamp = nil
 290 end #if
 291 end #return_timestamp
 292
 293 def shutdown
 294 @result_Timestamp.free
 295 @Timestamp_reader.close
 296 end #shutdown
 297
 298 def check_result()
 299 if (@result_Timestamp.num_rows ==1)
 300 then
 301 @result = "ok"
 302 else
 303 @result = "error"
 304 end #if
 305 end #check_result
 306
 307 private :check_result
 308 end #class
 309
 310 class Password_dbwrapper
 311 # Final code must sure be altered here in order to
 312 # connect with (remote) users AD
 313 ##
 314 #define constants
 315 Password_Host="localhost"
 316 Password_Username="local_password"
 317 Password_Password="pwd_manager"
 318 Password_DB="local_AD"
 319
 320 def initialize(username_to_search)
 321 @Password_reader = Mysql.new()
 322 @Password_reader.connect(host=Password_Host, user=Password_Username,
passwd=Password_Password, db=Password_DB)
 323 @result_Password=@Password_reader.query("SELECT Password FROM
local_users WHERE Username=\'#{username_to_search}\'")
 324 @parsed_once="no"
 325 end #initialize
 326
 327 def check_result_rows()
 328 if (@parsed_once == "no")
 329 then
 330 if (@result_Password.num_rows ==1)
 331 then
 332 @parsed_once="yes"
 333 @result = "ok"
 334 else
 335 #now we have a password violation or error user must be informed and
actions
 336 #must be logged as well as exit with an error
 337
##
 338 @parsed_once="yes"
 339 @result = "not-ok"
 340 #Error_exit.new(2)

 341 end #if
 342 else
 343 # programming error, just exit
 344 exit(1)
 345 end #if
 346
 347 end #check_result
 348
 349 def return_password
 350 if (@result_Password.num_rows ==1)
 351 then
 352 password = @result_Password.fetch_row[0].to_s
 353 if (password == nil) then #user unknown to database
 354 Error_exit.new(2)
 355 else
 356 result = password
 357 end #if
 358 else
 359 Error_exit.new(2)
 360 end #if
 361 end #return_password
 362
 363 def shutdown
 364 @result_Password.free
 365 @Password_reader.close
 366 end #shutdown
 367 private :check_result_rows
 368 end #class
 369
 370 #/----------------\
 371 #| --> main <-- |
 372 #\----------------/
 373 #define constants
 374 assign_constants.call
 375 $IP = ENV["REMOTE_ADDR"] #global scope
 376
 377 #object initialization
 378
 379 md5_hash =Digest::MD5.new()
 380
 381 db1= Timestamp_dbwrapper.new($IP)
 382 STAMP= db1.return_timestamp() #constant so that it can't be altered
 383 db1.shutdown()
 384
 385 #user data as provided by login form:
 386 user_data = Input_parser.new()
 387
 388 #check for correct format on the query
 389 uname=user_data.get_username()
 390 passwd=user_data.get_hashed_password()
 391 timestamp=user_data.get_timestamp()
 392
 393 #connect to the local user database
 394 db2= Password_dbwrapper.new(uname)
 395 #because we want to free the plain-text password As Soon As Possible
 396 #the hash will be calculated at once and then the wrapper will be
deleted
 397 md5_hash.update(db2.return_password().to_s + STAMP)
 398 hash = md5_hash.hexdigest
 399 db2.shutdown()
 400 #a call to garbage collector can be placed here
 401 logg_in = Correct_Loggon_handler.new($IP,uname)
 402

 403 if ((STAMP == timestamp) and (hash == passwd))then
 404 #the essential security check
 405 logg_in.unlock_user()
 406 Show_correct_log_in.new($IP, uname)
 407 else
 408 #timestamps do not match == attempt to violate for sure
 409 Error_exit.new(1)
 410 end #if

6.8 user_remover.rb

 1 #!/usr/local/bin/ruby
 2 =begin
 3 ###
 4 # Script responsible for removing user from database as well as #
 5 # from firewall rules #
 6 #---#
 7 # Dimitris Mistriotis <besieger@yahoo.com> #
 8 ###
 9 =end
 10
 11 begin
 12 require "mysql"
 13 rescue LoadError => load_err
 14 print "Abscence of needed module in order to operate normally.\n Error
message follows\n"
 15 print "#{load_err} \n"
 16 exit(1)
 17 end
 18
 19
 20 assign_constants = proc {
 21 begin
 22 _constants_db = Mysql.new()
 23 _constants_db.connect(host="localhost", user="attribute_reader",
password = "attribute2003", db="local_AD")
 24 _consants_results = _constants_db.query ("SELECT * FROM
configuration");
 25 _constants_db.close
 26 rescue MysqlError => connect_db_error
 27 print "Problem during constant values assigment,
exiting\n"
 28 print "Error number: #{connect_db_error.errno}. , Error
message: #{connect_db_error.error } \n"
 29 exit(3)
 30 end
 31 _consants_results.each_hash do |row|
 32 case row["Attribute"]
 33 when "wireless_device"
 34 Client_Interface = row["Value"]
 35 end #case
 36 end #do
 37 }
 38
 39 #constant definitions, edit them in order to suit your system
 40 IPtables = "/sbin/iptables"
 41 #end of constant definitions
 42
 43
 44
 45 show_help = proc {
 46 print "Correct syntax:\n"
 47 print "user_remover -i ip_to_remove [reason]\n or \n"
 48 print "user_remover -u username_to_remove [reason]\n"
 49 print "in the optional reason field why the user is removed can
be specified, \n"
 50 print "(example end_of_lease) it doesn't alter program behavior,
but this may change in future releases.\n"
 51 exit(2)
 52 }
 53
 54 check_iptables = proc { print "Checking if iptables is present and this

program is able to use it\n" }
 55
 56 class Client_Remover
 57 #the whole code is organized in class although all will be used only
once for various reasons
 58 #for example someone may want to remove all users before shutdown,with
this class-organization it's easy
 59 # constants for this class:
 60 Remover_Username = "user_remover"
 61 Remover_Password = "rmv23!"
 62 Remover_Host = "localhost"
 63 Remover_Database = "dhcp_clients"
 64 Remover_Table = "Current_Clients"
 65 def initialize
 66 print "Initializing Client Remover.\n"
 67 #open an always on connection to local database
 68 begin
 69 @db_handler = Mysql.new()
 70 @db_handler.connect(host=Remover_Host, user=Remover_Username,
passwd=Remover_Password, db=Remover_Database)
 71 rescue MysqlError => connect_error
 72 print "Problem while connecting to #{Remover_Database}
database.\n Error message: ", connect_error.error, "\n"
 73 exit(2)
 74 end #begin
 75
 76 end #initialize
 77
 78 def remove (method, data)
 79 case method
 80 when "ip"
 81 print "if it's to remove via IP then check IP and then go on\n"
 82 db_query_ip(data)
 83 #user_class = newcomer or authenticated
 84 #if we have reached this point verything is ok so:
 85 @final_IP = data
 86 when "username"
 87 print "if it's to remove via username get IP from user and then go
on\n"
 88 #if user is in database then final_IP = his IP
 89 user_class = authenticated
 90 #else exit error
 91 end #case
 92 database_remove(@final_IP)
 93 firewall_remove(@final_IP,@user_class)
 94 end #remove
 95
 96 def database_remove(ip_address)
 97 #issue a delete query
 98 begin
 99 _delete_result = @db_handler.query("DELETE FROM #{Remover_Table} WHERE
IP_address='#{ip_address}' LIMIT 1")
 100 rescue MysqlError => delete_error
 101 print "Could not delete from database, perhaps permissions problem\n"
 102 print "Error code: ", insert_error.errno, "\n"
 103 exit(2)
 104 end
 105 end #database_remove
 106
 107 def firewall_remove(ip_address,user_class)
 108 _user_MAC = get_mac()
 109 print "User's MAC #{_user_MAC}\n"
 110 print "Remove_Script mac to remove: #{_user_MAC}\n"

 111 case user_class
 112 when "newcomer"
 113 print "removing newcomer, a user who hasn't authenticated\n"
 114 #the opposite of the insertion rules, only -I becomes -D
 115 system("iptables -t filter -D INPUT -i #{Client_Interface} -s
#{ip_address} -m mac --mac-source #{_user_MAC} -j newcomer_input")
 116 system("iptables -t nat -D PREROUTING -i #{Client_Interface} -p tcp
-s #{ip_address} -j newcomer_prerouting")
 117 system("iptables -t filter -D FORWARD -i #{Client_Interface} -s
#{ip_address} -m mac --mac-source #{_user_MAC} -j newcomer_forward")
 118
 119 when "authenticated"
 120 print "removing a user who has authenticated himshelf\n"
 121 system("iptables -t filter -D INPUT -i #{Client_Interface} -s
#{ip_address} -m mac --mac-source #{_user_MAC} -j authenticated_input")
 122 #more (08 June):
 123 system("iptables -t filter -D FORWARD -i #{Client_Interface} -s
#{ip_address} -m mac --mac-source #{_user_MAC} -j authenticated_forward")
 124
 125 end #case
 126 end #firewall_remove
 127
 128 def db_query_ip(ip_to_check)
 129 #if ip is in database then a. set user class, b. return true
 130 #select statement here queries for username
 131 #if it's null but number of results is one (1) then it's a newcomer
 132 #else if numner of results is zero then we have error
 133 #or if number of results is one but != null then it's an authenticated
one
 134
 135 #if IP is in database then final_IP=data
 136 _select_result = @db_handler.query("SELECT User_info, MAC_address from
#{Remover_Table} WHERE IP_address='#{ip_to_check}' LIMIT 1") #limited to one it
can't be more
 137 if (_select_result.num_rows !=0) then
 138 _select_result.each_hash do |row|
 139 print "info: #{row["User_info"]}, mac: #{row["MAC_address"]} \n"
 140 set_mac(row["MAC_address"])
 141 if (row["User_info"] != nil) then
 142 #the user is an authenticated one
 143 print "authenticated user...\n"
 144 @user_class = "authenticated"
 145 else
 146 print "Newcomer\n"
 147 @user_class = "newcomer"
 148 end #if
 149 end #do |row|
 150 _select_result.free #memory used
 151 else
 152 _select_result.free
 153 #print error message and exit normally
 154 print "No user with IP address #{ip_to_check} exists now on
system.\n"
 155 exit(0)
 156 #tolerance is shown here because a user might be requsted to be
removed from two
 157 #reasons at once (e.g. end of lease and user request)
 158 end #if
 159
 160 end #db_query_ip
 161
 162 def db_query_username(username_to_check)
 163 #if user is in database then a. set user class b. set ip address

c.return true
 164 _select_result = @db_handler.query("SELECT IP_address, MAC_address
from #{Remover_Table} WHERE IP_address='#{username_to_check}' LIMIT 1") #limited
to one it can't be more
 165 if (_select_result.num_rows !=0) then
 166 @user_class = "authenticated" #no other possible choice!
 167 _select_result.each_hash do |row|
 168 print "ip: #{row["IP_address"]}, mac: #{row["MAC_address"]} \n"
 169 set_mac(row["MAC_address"])
 170 @final_IP = row["IP_address"]
 171 end #do |row|
 172 else #no authentication has been made no username is present
 173 _select_result.free
 174 print "No user with Username #{username_to_check} exists now on
system.\n"
 175 exit(0)
 176 end #if
 177 end #db_query_username
 178
 179 def set_mac(current_mac_address)
 180 @user_mac = current_mac_address.upcase #iptables uses uppercase
letters
 181 end #set_mac
 182
 183 def get_mac()
 184 _temp = @user_mac
 185 end #get_mac
 186
 187 def shutdown()
 188 #close connection with local database
 189 @db_handler.close()
 190 end #shutdown()
 191
 192 private :firewall_remove
 193 private :database_remove
 194 private :db_query_ip
 195 private :db_query_username
 196 private :set_mac
 197
 198 end #Client_Remover
 199
 200 #--> Main <--#
 201 #check of command line data
 202 #number of arguments
 203 if ((ARGV.size !=2) and (ARGV.size !=3)) then
 204 print "Incorrect number of arguments\n\n"
 205 show_help.call
 206 end #if
 207
 208 case ARGV[0]
 209 when "-i"
 210 print "removing using ip\n"
 211 if (ARGV[1] !~ /^\d\d\d.\d\d\d.\d*.\d*$/) then
 212 print "Incorrect IP format: #{ARGV[1]}\n" #showing the error to
the user
 213 show_help.call
 214 end #if
 215 $method = "ip"
 216 when "-u"
 217 print "removing using username\n"
 218 if (ARGV[1] !~ /^[\w]+[@]([\w]+.)+[\w]+$/) then
 219 print "Incorrect username format: #{ARGV[1]}\n" #showing the error
to the user

 220 show_help.call
 221 end #if
 222 $method = "username"
 223 when // #any other case
 224 print "Error in first argument\n"
 225 show_help.call
 226 end #case
 227
 228 assign_constants.call
 229 handler = Client_Remover.new()
 230 handler.remove($method,ARGV[1])
 231 handler.shutdown()

6.9 dhcp_handler.rb

 1 #!/usr/local/bin/ruby
 2 =begin
 3
##
#
 4 # Script responsible for cheking the DHCP server and than apply pre-
defined #
 5 #policy such as restrict until authentication, remove after expiration
etc #
 6 #---
--------#
 7 # Dimitris Mistriotis 2003 (besieger@yahoo.com)
#
 8 #
#
 9
##
#
 10 =end
 11
 12 begin
 13 require "mysql"
 14 rescue LoadError => load_err
 15 print "Load error!, type: #{load_err} \n"
 16 print "Perhaps you haven't installed MySQL - ruby interface, \n"
 17 print "which is necessary to run most parts of DAWN. \n"
 18 print "Try visiting http://www.tmtm.org/ja/mysql/ruby/ for more
information\n"
 19 exit(1)
 20 end
 21
 22 #Some globally used constants:
 23
 24 DhcpStatus = "/usr/bin/dhcpstatus"
 25 IPtables = "/sbin/iptables"
 26 IFconfig = "/sbin/ifconfig"
 27 Pid_file = "/var/run/dawn.pid"
 28
 29 assign_constants = proc {
 30 begin
 31 _constants_db = Mysql.new()
 32 _constants_db.connect(host="localhost", user="attribute_reader",
password = "attribute2003", db="local_AD")
 33 _consants_results = _constants_db.query ("SELECT * FROM
configuration");
 34 _constants_db.close
 35 rescue MysqlError => connect_db_error
 36 print "Problem during constant values assigment,
exiting\n"
 37 print "Error number: #{connect_db_error.errno}. , Error
message: #{connect_db_error.error } \n"
 38 exit(3)
 39 end
 40 _consants_results.each_hash do |row|
 41 case row["Attribute"]
 42 when "wireless_device"
 43 Client_Interface = row["Value"]
 44 when "proxy_port"
 45 Proxy_port = row["Value"]
 46 when "subnet"
 47 Dhcpd_Subnet = row["Value"]

 48 end #case
 49 end #do
 50 _consants_results.free
 51
 52 #get my ip by using ifconfig
 53 My_IP = `#{IFconfig} #{Client_Interface} |grep "inet
addr"`.to_s[/\d\d\d.\d\d\d.\d*.\d*/]
 54
 55 print "Showing Constants:\n"
 56 print "wireless_device = #{Client_Interface} \n"
 57 print "proxy_port = #{Proxy_port} \n"
 58 print "listening ip = #{My_IP} \n"
 59 }
 60
 61 temp_dir_create = proc {
 62 _date = `date +%d%m`
 63 _pid =Process.pid
 64 Temp_dir = "/tmp/" + _date.chop + "-" + _pid.to_s + "/"
 65 #defined as aconstant since many parts of the program will use
it
 66 print "Creating temporary directory #{Temp_dir}\n"
 67 #create it
 68 system "mkdir --mode=0600 #{Temp_dir}"
 69 }
 70
 71 class New_User_handler
 72 # constants for this class:
 73 Username = "dhcp_handler"
 74 Password = "dhcp084"
 75 Host = "localhost"
 76 Database = "dhcp_clients"
 77 Table = "Current_Clients"
 78 def initialize()
 79 print "initializing new user handler\n"
 80 begin
 81 #what happens if we can't connect to the database
 82 #note: the connection will be always-on for performance reasons
 83 @db_handler = Mysql.new()
 84 @db_handler.connect(host=Host, user=Username, passwd=Password,
db=Database)
 85 rescue MysqlError => connect_error
 86 print "Problem while connecting to #{Database} database.\n"
 87 print "Error message: ", connect_error.error, "\n"
 88 exit(2)
 89 end #begin
 90 end #initialize
 91
 92 def network_restrict()
 93 print "network level #{@latest_IP_address}\n"
 94 #the rules on IPtables will be add as a stack (-I option)
 95 #so they are placed in reverse order
 96 system("iptables -t filter -I INPUT -i #{Client_Interface} -s
#{@latest_IP_address} -m mac --mac-source #{@latest_MAC} -j newcomer_input")
 97 #these three rules basically say this: Allow only web connections to
this IP - mac pair
 98 #redirection of web traffic to this host follows:
 99
 100 system("iptables -t nat -I PREROUTING -i #{Client_Interface} -p tcp -s
#{@latest_IP_address} -j newcomer_prerouting")
 101 system("iptables -t filter -I FORWARD -i #{Client_Interface} -s
#{@latest_IP_address} -m mac --mac-source #{@latest_MAC} -j newcomer_forward")
 102 end #network_restrict
 103

 104 def add(ip_address,mac_address)
 105 @latest_IP_address = ip_address
 106 @latest_MAC = mac_address
 107 begin
 108 print "adding newcomer #{ip_address} to local database\n"
 109 @db_handler.query("INSERT INTO #{Table} (IP_address, MAC_address,
Username, Domain, User_info, Timestamp) VALUES
('#{@latest_IP_address}','#{@latest_MAC}', NULL, NULL, NULL, NOW())")
 110 rescue MysqlError => insert_error
 111 #basically do nothing with it because it's the first target of a DoS
attack
 112 print "Error code: ", insert_error.errno, "\n"
 113 end #begin
 114 network_restrict()
 115 end #add
 116
 117 private :network_restrict
 118 end #New_User_handler
 119
 120
 121 class DhcpStatus_handler
 122 # constants for this class:
 123
 124 Dhcp_Last_time = "dhcpstatus_before.txt"
 125 Dhcp_This_time = "dhcpstatus_now.txt"
 126 Diff_file = "differences.txt"
 127
 128 def initialize()
 129 #chech if dhcpstatus exists and readable and executable
 130 #file initialization:
 131 system ("/usr/bin/dhcpstatus -s
#{Dhcpd_Subnet}>#{Temp_dir}#{Dhcp_This_time} 2>/dev/null")
 132 system ("touch #{Temp_dir}#{Dhcp_Last_time}")
 133 system ("touch #{Temp_dir}#{Diff_file}")
 134 #new user handler:
 135 @newcomer = New_User_handler.new
 136 end #initialize
 137
 138 def process_changes()
 139 #old file = previous check new one
 140 system ("mv #{Temp_dir}#{Dhcp_This_time}
#{Temp_dir}#{Dhcp_Last_time}")
 141 system ("/usr/bin/dhcpstatus -s
#{Dhcpd_Subnet}>#{Temp_dir}#{Dhcp_This_time} 2>/dev/null")
 142 system ("diff #{Temp_dir}#{Dhcp_Last_time}
#{Temp_dir}#{Dhcp_This_time} >#{Temp_dir}#{Diff_file}")
 143 if (File.stat("#{Temp_dir}#{Diff_file}").size? != nil) then #there are
data in the file
 144 @diff_file = File.open ("#{Temp_dir}#{Diff_file}")
 145
 146 #Here eof is handled as an exception raised so when we are out of
 147 #input (because of EOF) file will be automatically closed.
 148 while (true)
 149 begin
 150 @input = @diff_file.readline()
 151 print "---> #{@input}"
 152 if (@input =~ /IP address/) then
 153 #something has changed with an address
 154 @ip_address = @input[/\d\d\d.\d\d\d.\d*.\d*/]
 155 print "ip address: #{@ip_address}\n"
 156 if (@input =~ /FREE/) then
 157 #an ip address has changed from free to active (== has been
assigned)

 158 #consume three lines of input and get MAC from the fourth
 159 #for _count in 0..3
 160 @mac_address = nil
 161 while (@mac_address == nil)
 162 @input = @diff_file.readline()
 163 print "data consumed (while searching for MAC): #{@input} \n"
 164 @mac_address = @input[/([\da-f][\da-f][:]){5,5}[\da-f][\da-f]/]
 165 end #for
 166 print "MAC address: #{@mac_address}\n"
 167 #we have ip and mac so client's information can be processed
 168 @newcomer.add(@ip_address,@mac_address)
 169 else
 170 #there are two cases now or the user has left local AD (and has
to be removed) or
 171 #there is a re-request for dhcp so time information has changed
 172 #in that case ip still remains active
 173 print "user left AD or dhcp re-request\n"
 174 _remove_flag = "down"
 175 while (!(@input =~ /IP address/) or (@diff_file.eof != true))
 176 @input = @diff_file.readline()
 177 print "searching for remove flag-> #{@input} "
 178 #the check will be performed here inside the loop
 179 if (@input =~ /FREE/) then
 180 #the address was active and now is free
 181 print "Set remove flag up\n"
 182 _remove_flag = "up"
 183 end #if
 184 end #while
 185 if (_remove_flag=="up") then
 186 system ("./user_remover.rb -i #{@ip_address} end_lease")
 187 end #if
 188 #must be located in teh same folder with this program
 189 end #if
 190 end #if IP address
 191 rescue EOFError => error
 192 @diff_file.close()
 193 break
 194 end #begin
 195 end #while
 196 @diff_file.close
 197 end #if
 198
 199 end #process_changes
 200 end #class
 201
 202 class Authenticated_Users_handler
 203 #Again class_constants
 204 Auth_user = "dhcp_handler"
 205 Auth_pwd = "dhcp084"
 206 Auth_host = "localhost"
 207 Auth_db = "dhcp_clients"
 208 Auth_table = "Authenticated_IPs"
 209 def initialize()
 210 print "A class responsible for giving proper permissions to already
authenticated users\n"
 211 @user_db_hander = Mysql.new()
 212 begin
 213 @user_db_hander.connect(host=Auth_host, user=Auth_user,
passwd=Auth_pwd, db=Auth_db)
 214 #again this conncection will be always-on for performance reasons
 215 rescue MysqlError => _connect_error
 216 print "Problem while connecting to #{Auth_db} database.\n"
 217 print "Error message: ", _connect_error.error, "\n"

 218 exit(2)
 219 end #begin
 220 end
 221
 222 def process_changes()
 223 _newcomers = @user_db_hander.query("SELECT * FROM #{Auth_table} LIMIT
10")
 224 #limit is set to ten so that the script will never stop here
processing many newcomers
 225 #the rest of them will be proccessed very soon
 226 if (_newcomers.num_rows() > 0) then # Check and proceed ifonly there
are results to process
 227 _newcomers.each() {|ip_address| rearrange_ip(ip_address) }
 228 end #if
 229 _newcomers.free
 230 end #process_changes
 231
 232 def rearrange_ip (ip_address_to_process)
 233
 234 #testing reasons:
 235 #ip_address_to_process="192.168.0.254"
 236 #here the opposite of the previous rules are applied (-I becomes -D)
 237 _temp = `#{IPtables} -L |grep #{ip_address_to_process}`
 238 _mac = _temp.to_s[/([\dA-F][\dA-F][:]){5,5}[\dA-F][\dA-F]/]
 239 #because mac address is also needed i managed this work-around
 240 #here the opposite of the previous rules are applied (-I becomes -D)
 241 system("iptables -t filter -D INPUT -i #{Client_Interface} -s
#{ip_address_to_process} -m mac --mac-source #{_mac} -j newcomer_input")
 242 system("iptables -t filter -I INPUT -i #{Client_Interface} -s
#{ip_address_to_process} -m mac --mac-source #{_mac} -j authenticated_input")
 243 system("iptables -t filter -D FORWARD -i #{Client_Interface} -s
#{ip_address_to_process} -m mac --mac-source #{_mac} -j newcomer_forward")
 244 system("iptables -t filter -I FORWARD -i #{Client_Interface} -s
#{ip_address_to_process} -m mac --mac-source #{_mac} -j authenticated_forward")
 245 #removing from prerouting chain
 246 system("iptables -t nat -D PREROUTING -i #{Client_Interface} -p tcp -s
#{ip_address_to_process} -j newcomer_prerouting")
 247
 248 #these three rules basically say this: Allow only web connections to
this IP - mac pair
 249 #redirection of web traffic to this host follows:
 250 system("iptables -t nat -D PREROUTING -i #{Client_Interface} -p tcp -s
#{ip_address_to_process} -j newcomer_prerouting")
 251
 252 #after the network part, this IP can be deleted from temp space
 253 begin
 254 @user_db_hander.query("DELETE FROM #{Auth_table} WHERE ip_address =
'#{ip_address_to_process}'")
 255 rescue MysqlError => _err #in order to have error here a problem has
happened during instalation
 256 print "Error message: ", _err.error, "\n"
 257 exit(2)
 258 end #begin
 259
 260 end #rearrange_ip
 261
 262 private :rearrange_ip
 263 end #Authenticated_Users_handler
 264
 265 #signal handlers
 266 trap ("SIGINT", "SIG_IGN")
 267 trap ("SIGQUIT", "SIG_IGN")
 268 #so when parent-initialization process ends this program will continue

to operate
 269 #but when it's killed then it will die:
 270 trap 9, proc { print "Terminating dhcp_handler: #{$$}\n"
 271 print "Killing proxy with pid #{Java_proxy}\n"
 272 system "kill -9 #{Java_proxy}"
 273 }
 274
 275 #/----------------\
 276 #| --> main <-- |
 277 #\----------------/
 278
 279 #Assign values to constants after reading them from local database.
 280 assign_constants.call
 281
 282 #before beginning program operations, Java proxy is being initialized
 283 Java_proxy = fork
 284 if (Java_proxy == nil) then
 285 #we are in child process
 286 exec("java Proxy #{Proxy_port} #{My_IP} 1>/dev/null 2>&1")
 287 #by calling exec, the same pid will be used, usefull on killing from
parent process
 288 end #if
 289
 290 #write pid to appropriate file
 291 system "touch #{Pid_file}"
 292 system "echo #{$$} >#{Pid_file}"
 293
 294
 295 temp_dir_create.call
 296 $main_parser = DhcpStatus_handler.new()
 297 $user_handler = Authenticated_Users_handler.new()
 298 while (true) #main loop
 299 print "." #I am alive dot
 300 sleep(2) #wait 2 seconds between procecing
 301 $main_parser.process_changes()
 302 $user_handler.process_changes()
 303 end #main loop

6.10 init_dawn.sh

 1 #!/bin/bash
 2
 3 ##
 4 # Shell script used to start/stop DAWN #
 5 # Must be placed in /etc/rc.d/init.d directory #
 6 #--#
 7 # Dimitris Mistriotis <besieger@yahoo.com> #
 8 ##
 9
 10 #Some variables
 11 pid_file=/var/run/dawn.pid
 12 program_root=/usr/local/dawn
 13 executable=$program_root/bin/dhcp_handler.rb
 14 firewall=$program_root/bin/prepare_iptables.sh
 15 log_file=/var/log/dawn.log
 16
 17
 18

 19 #actions defined as functions
 20 function start_dawn()
 21 {
 22 echo starting DAWN
 23 #clearing from possible unfinished sessions:
 24 rm -rf $pid_file
 25 touch $pid_file
 26 #prepare firewall
 27 $firewall >>$log_file
 28 #execute the main file
 29 nohup $executable 1>>$log_file 2>>$log_file &
 30 return
 31 }
 32

 33 function stop_dawn()
 34 {
 35 echo Terminating dawn
 36 dawn_pid=`cat $pid_file`
 37 kill -9 $dawn_pid
 38 return
 39 }
 40

 41 #do actions according to command line input
 42 case $1 in
 43 'start')
 44 start_dawn
 45 ;;
 46 'stop')
 47 stop_dawn
 48 ;;
 49 'help')
 50 #printing a quick help message
 51 echo help mode, usage:
 52 echo $0 start
 53 echo starts DAWN services, while
 54 echo $0 stop
 55 echo is used to stop DAWN from running
 56 ;;
 57 *)
 58 echo incorrect usage of program, try using help as first argument
 59 ;;
 60 esac

6.11 import_commands.sh

Purpose of this script, used at installation time is to upload
information relative with this project to MySQL database. Straightforward code
with no decisions made.

 1 #!/bin/sh
 2 echo be sure for priviledges while importing as well as that
 3 echo mysql is up and operating
 4
 5 #Create databases and import table structure
 6 mysqladmin create local_AD
 7 mysql local_AD <$1/local_ad_information.sql
 8 mysqladmin create dhcp_clients
 9 mysql dhcp_clients <$1/dhcp_clients.sql
 10
 11 #now GRANT permissions
 12 mysql <$1/configure_grant_tables.sql

6.12 install_script.sh

 1 #!/bin/bash
 2
 3 ##
 4 # Shell script responsible for installing DAWN #
 5 #--#
 6 # Dimitris Mistriotis <besieger@yahoo.com> #
 7 ##
 8
 9 #Values Assigment
 10 #target directory for main functions
 11 program_root=/usr/local/dawn
 12 #cgi-bin directory
 13 cgi_bin=/var/www/cgi-bin/
 14 #which considered as a standard among linux distributions
 15 init_dir=/etc/rc.d/init.d/
 16 run_level3_init=/etc/rc.d/rc3.d/
 17 #and therefore they are hard-coded.
 18
 19 #set default owner of files
 20 owner=root
 21 #set mask for file installation default owner can rwx, group r-x, others

 22 bin_filemask=047
 23 other_filemask=046
 24
 25 if [$UID -ne 0]; then
 26 echo "You must be root in order ot perform DAWN installation"
 27 exit 1
 28 fi
 29
 30 echo DAWN installation script
 31 echo Creating target directories
 32 #refer to documentation for directory structure
 33 mkdir -p $program_root 2>/dev/null
 34 mkdir -p $program_root/bin 2>/dev/null
 35 mkdir -p $program_root/doc 2>/dev/null
 36 mkdir -p $program_root/var 2>/dev/null
 37 mkdir -p $program_root/var/additional_components 2>/dev/null
 38 mkdir -p $program_root/var/initialization_files 2>/dev/null
 39 mkdir -p $cgi_bin 2>/dev/null
 40
 41 echo installing files
 42 #... one by one
 43 echo bin directory
 44 install dawn/bin/user_remover.rb $program_root/bin --mode=$bin_filemask
--owner=$owner --verbose
 45 install dawn/bin/dhcp_handler.rb $program_root/bin --mode=$bin_filemask
--owner=$owner --verbose
 46 install dawn/bin/prepare_iptables.sh $program_root/bin --
mode=$bin_filemask --owner=$owner --verbose
 47 install dawn/bin/Proxy.class $program_root/bin --mode=$bin_filemask --
owner=$owner --verbose
 48 install dawn/bin/ProxyThread.class $program_root/bin --
mode=$bin_filemask --owner=$owner --verbose
 49 echo doc directory
 50 install dawn/doc/dawn_documentation.sxw $program_root/doc --
mode=$other_filemask --owner=$owner --verbose
 51 echo var directory
 52 install dawn/var/Proxy.java $program_root/var --mode=$other_filemask --
owner=$owner --verbose
 53 echo cgi-bin

 54 install dawn/to-cgi-bin/login-cgi.rb $cgi_bin --mode=$bin_filemask --
owner=$owner --verbose
 55 install dawn/to-cgi-bin/login-page.rb $cgi_bin --mode=$bin_filemask --
owner=$owner --verbose
 56 echo init directory
 57 install dawn/to-init.d/init_dawn.sh $init_dir --mode=$bin_filemask --
owner=$owner --verbose
 58
 59 echo OK with file installation, copying additional files
 60 #don't care about file permissions
 61 cp dawn/var/additional_components/*.*
$program_root/var/additional_components
 62 cp dawn/var/initialization_files/*.*
$program_root/var/initialization_files
 63
 64 echo initializing MySQL Database
 65 bash dawn/var/initialization_files/import_commands.sh
dawn/var/initialization_files
 66
 67 echo Creating symbolic links in $run_level3_init
 68 ln -s $init_dir/init_dawn.sh $run_level3_init/S99dawn
 69 chmod +x $run_level3_init/S99dawn
 70 ln -s $init_dir/init_dawn.sh $run_level3_init/K99dawn

 71 chmod +x $run_level3_init/K99dawn

Appendix I - Short introduction to Ruby

This Appendix does not intent to be an introduction to Ruby
programming language, or a complete tutorial by any means. Tend to look at it
as cross-reference between Ruby and a typical Object Oriented language like
Java, so some similarities in concepts and differences in syntax will be illustrated
here.

References

Two documents can be considered essential:

� “Programming Ruby, The Pragmatic Programmer's Guide” and

� Ruby User's Guide

Fortunately these two can be obtained very easily: the former is
installed with other Ruby documentation, so we can easily say that it follows
every installation, the latter can be obtained by language's web site
(www.ruby.org) under documents link.

Variable Scope

An issue that rises with all scripting languages is variable scope since
every one tends to use different symbols. A table from “Ruby User's Guide” can be
considered useful:

Code blocks

This section is placed here because of questions risen from people
reading ruby source code for first time. Code blocks begin with “begin” reserved
word and end with “end” reserved word. Inside each block an exception might
rise, which can be captured with “rescue” reserved word into a variable and

handled accordingly. This exception mechanism has been used extensively
because it gives the ability to produce more elegant and easy to read source code.

Example:

begin
require "mysql"
 rescue LoadError => load_err
 print "Load error!, type: #{load_err} \n"
 print "Perhaps you haven't installed MySQL - ruby interface, \n"
 print "which is necessary to run most parts of DAWN. \n"
 print "Try visiting http://www.tmtm.org/ja/mysql/ruby/ for more
information\n"
 exit(1)
end

(originating from section 6.9)

